
Improving WPM2 for (Weighted) Partial
MaxSAT ⋆

Carlos Ansótegui1, Maria Luisa Bonet2, Joel Gabàs1, and Jordi Levy3

1 DIEI, Univ. de Lleida
carlos@diei.udl.cat

joel.gabas@diei.udl.cat
2 LSI, UPC

bonet@lsi.upc.edu
3 IIIA-CSIC

levy@iiia.csic.es

Abstract. Weighted Partial MaxSAT (WPMS) is an optimization
variant of the Satisfiability (SAT) problem. Several combinatorial
optimization problems can be translated into WPMS. In this paper
we extend the state-of-the-art WPM2 algorithm by adding several
improvements, and implement it on top of an SMT solver. In particular,
we show that by focusing search on solving to optimality subformulas
of the original WPMS instance we increase the efficiency of WPM2.
From the experimental evaluation we conducted on the PMS and WPMS
instances at the 2012 MaxSAT Evaluation, we can conclude that the new
approach is both the best performing for industrial instances, and for the
union of industrial and crafted instances.

1 Introduction

In the last decade Satisfiability (SAT) solvers have progressed dramatically in
performance due to new algorithms, such as, conflict directed clause learning [36],
and better implementation techniques. Thanks to these advances, nowadays the
best SAT solvers can tackle hard decision problems. Our aim is to push this
technology forward to deal with optimization problems.

The Maximum Satisfiability (MaxSAT) problem is the optimization version
of SAT. The idea behind this formalism is that sometimes not all constraints
of a problem can be satisfied, and we try to satisfy the maximum number of
them. The MaxSAT problem can be further generalized to the Weighted Partial
MaxSAT (WPMS) problem.

In the MaxSAT community, we find two main classes of algorithms: branch
and bound [17, 22, 24, 26, 27] and SAT-based [2, 14, 19–21, 31–33]. The latter
clearly dominate on industrial and some crafted instances, as we can see in the
results of the last 2012 MaxSAT Evaluation. SAT-based MaxSAT algorithms

⋆ This research has been partially founded by the CICYT research projects TASSAT
(TIN2010-20967-C04-01/03/04) and ARINF (TIN2009-14704-C03-01).



basically reformulate a MaxSAT instance into a sequence of SAT instances. By
solving these SAT instances the MaxSAT problem can be solved [6].

In this paper we revisit the SAT-based MaxSAT algorithm WPM2 [5]
which belongs to a family of algorithms that exploit the information from
the unsatisfiable cores the underlying SAT solver provides. This algorithm is
the natural extension to the weighted case of the Partial MaxSAT algorithm
PM2 [4, 3]. In our experimental investigation the original WPM2 algorithm
solves 796 out of 1474 from the whole benchmark of PMS and WPMS industrial
and crafted instances at the 2012 MaxSAT Evaluation. We have extended
WPM2 with several complementary improvements. First of all, we apply the
stratification approach described in [2], what results in solving 74 additional
instances. Secondly, we introduce a new criteria to decide when soft clauses can
be hardened, that provides 66 additional solved instances. The hardening of
soft clauses in MaxSAT SAT-based solvers has been previously studied in [2,
33]. Finally, our most effective contribution is to introduce a new strategy that
focuses search on solving to optimality subformulas of the original MaxSAT
instance. Actually, the new WPM2 algorithm is parametric on the approach
we use to optimize these subformulas. This allows to combine the strength
of exploiting the information extracted from unsatisfiable cores and other
optimization approaches. By solving these smaller optimization problems we
get the most significant boost in our new WPM2 algorithm. In particular,
we experiment with three approaches: (i) refine the lower bound on these
subformulas with the subsetsum function [13, 5], (ii) refine the upper bound
with the strategy applied in minisat+ [15], SAT4J [10], qmaxsat [21] or
ShinMaxSat [20], and (iii) a binary search scheme where the lower bound and
upper bound are refined as in the previous approaches. The best performing
approach in our experimental analysis is the second one and it allows to solve up
to 238 additional instances. As a summary, the overall speed-up we achieved on
the original WPM2 solver is about 378 additional solved instances, a 47% more.

As we mentioned, SAT-based MaxSAT algorithms reformulate a MaxSAT
instances into a sequence of SAT instances. Obviously, it is important to use
an efficient SAT solver. Also, most SAT-based MaxSAT algorithms require
the addition of Pseudo-Boolean (PB) linear constraints as a result of the
reformulation process. These PB constraints are used to bound the cost of
the optimal assignment. Currently, in most state-of-the-art SAT-based MaxSAT
solvers, PB constraints are translated into SAT. However, there is no known SAT
encoding which can guarantee the original propagation power of the constraint,
i.e, what we call arc-consistency, while keeping the translation low in size. The
best approach so far, has a cubic complexity [8]. This can be a bottleneck for
WPM2 [5] and also for other algorithms such as, BINCD [19] or SAT4J [10].

In order to treat PB constraints with specialized inference mechanisms and a
moderate cost in size, while preserving the strength of SAT techniques for the rest
of the formula, we use the Satisfiability Modulo Theories (SMT) technology [35].
Related work in this sense can be found in [34]. Also, in [1] a Weighted Constraint

2



Satisfaction Problems (WCSP) solver implementing the original WPM1 [4]
algorithm is presented.

An SMT instance is a generalization of a Boolean formula in which
some propositional variables have been replaced by predicates with predefined
interpretations from background theories such as, e.g., linear integer arithmetic.
Most modern SMT solvers integrate a SAT solver with decision procedures
(theory solvers) for sets of literals belonging to each theory. This way, we can
hopefully get the best of both worlds: in particular, the efficiency of the SAT
solver for the Boolean reasoning and the efficiency of special-purpose algorithms
for the theory reasoning.

Another reasonable choice would be to use a PB solver, which can be seen as a
particular case of an SMT solver specialized on the theory of PB constraints [28,
29]. However, if we also want to solve problems modeled with richer formalisms
like WCSP, the SMT approach seems a better choice since we can take advantage
of a wide range of theories [1].

In this work, we implemented both the last version of the WPM1 algorithm [2]
and the revisited version of the WPM2 algorithm on top the of the SMT solver
Yices. Then, we performed an extensive experimental evaluation comparing them
with the best two solvers for PMS and WPMS categories at the 2012 MaxSAT
Evaluation and with three additional solvers that did not take part but have
been reported to exhibit good performance: bincd2, which is the new version of
the BINCD algorithm [19] described in [33], with the best configuration reported
by authors,maxhs from [14], which consists in an hybrid SAT and Integer Linear
Programming (ILP) approach, and ilp which performs a translation of WPMS
into ILP solved with IBM-CPLEX studio124 [7].

We observe that the implementation on SMT of our new WPM2 algorithm
with the second approach for optimizing the subformulas is the best performing
solver for both PMS and WPMS industrial instances. We also observe that it
is the best performing for the union of PMS and WPMS industrial and crafted
instances, what shows this is a robust approach. These results make us conjecture
that by improving the interaction of our new WPM2 algorithm with diverse
optimization techniques applied on the subformulas we can get additional speed-
ups.

This paper proceeds as follows. Section 2 presents some preliminary concepts.
Section 3 describes WPM2 [5] and the new improvements. Section 4 describes
the SMT problem and discuss some implementation details of the SMT-based
MaxSAT algorithms. Section 5 presents the experimental evaluation. Finally,
Section 6 shows the conclusions and the future work.

2 Preliminaries

A literal is either a Boolean variable x or its negation x. A clause C is a
disjunction of literals. A weighted clause is a pair (C,w), where C is a clause
and w is a natural number or infinity, indicating the penalty for falsifying the

3



clause C. A Weighted Partial MaxSAT formula is a multiset of weighted clauses

ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}

where the first m clauses are soft and the last m′ clauses are hard. The set of
variables occurring in a formula ϕ is noted as var(ϕ).

A (total) truth assignment for a formula ϕ is a function I : var(ϕ) → {0, 1},
that can be extended to literals, clauses and SAT formulas. For MaxSAT
formulas is defined as I({(C1, w1), . . . , (Cm, wm)}) =

∑m
i=1

wi (1 − I(Ci)). The
optimal cost of a formula is cost(ϕ) = min{I(ϕ) | I : var(ϕ) → {0, 1}} and an
optimal assignment is an assignment I such that I(ϕ) = cost(ϕ).

The Weighted Partial MaxSAT problem for a Weighted Partial MaxSAT
formula ϕ is the problem of finding an optimal assignment.

3 WPM2 algorithm

The WPM2 algorithm [5] is described in Algorithm 1. The fragments in gray
(lines 4, 10, 11, 13- 18 and 20) correspond to the new improvements we have
incorporated.

In the WPM2 algorithm, we extend soft clauses Ci with a unique fresh
auxiliary blocking variable bi obtaining ϕw = {Ci ∨ bi}i=1...m ∪ {Cm+i}i=1...m′ .
Notice that bi will be set to true by a SAT solver on ϕw if Ci is false. We
also work with a set AL of at-least PB constraints of the form

∑

i∈A wi bi ≥ k

on the variables bi, and a similar set AM of at-most constraints of the form
∑

i∈A wi bi ≤ k, that are modified at every iteration of the algorithm.
Intuitively, the WPM2 algorithm refines at every iteration the lower bound on

ϕ till it reaches the optimum cost(ϕ). The AM constraints are used to bound the
cost of the falsified clauses. The AL constraints are used to impose that subsets
of soft clauses have a minimum cost and to compute the AM constraints, as
we will see later. The algorithm ends when ϕw ∪ CNF (AL ∪ AM) becomes
satisfiable 4, where CNF is the translation to SAT of the PB constraints.

Technically speaking, the AL constraints give lower bounds on cost(ϕ). The
AM constraints enforce that all solutions of the set of constraints AL ∪ AM

are the solutions of AL of minimal cost. This ensures that any solution of the
formula sent to the solver, ϕw ∪ CNF (AL ∪ AM), if there is any, is an optimal
assignment of ϕ. Therefore, given a set of at-least constraints AL we compute
a corresponding set of at-most constraints AM as follows. First, we need to
introduce the notion of core and cover. A core is a set of indexes A such that
∑

i∈A wi bi ≥ k ∈ AL. Function core(
∑

i∈A wi bi ≥ k) returns the core A and
function cores(AL) returns {core(al) | al ∈ AL}. Covers are defined from cores
as follows.

Definition 1. Given a set of cores L, we say that the set of indexes A is a cover
of L, if it is a minimal non-empty set such that, for every A′ ∈ L, if A′ ∩A 6= ∅,
then A′ ⊆ A. Given a set of cores L, we denote the set of covers of L as SC(L).

4 The AL constraints are redundant, i.e., not required to be sent to the SAT solver
for the soundness of the algorithm but help to speed up the search.

4



Algorithm 1: Revisited WPM2 algorithm.

Input: ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
1: if sat({Ci ∈ ϕ | wi = ∞}) = (UNSAT, , ) then return (∞, ∅)
2: ϕw := {C1 ∨ b1, . . . , Cm ∨ bm, Cm+1, . . . , Cm+m′} ⊲Extend all soft clauses

3: AL := {w1 b1 ≥ 0, . . . , wm bm ≥ 0} ⊲Set of at-least constraints

4: wmax := ∞
5: while true do

6: AM := ∅ ⊲Set of at-most constraints

7: foreach (
∑

i∈A
wi bi ≥ k) ∈ AL do

8: if A ∈ SC(cores(AL)) then
9: AM := AM ∪ {

∑
i∈A

wi bi ≤ k}

10: (st, ϕc, I) := sat(ϕw\{Ci ∨ bi | (Ci, wi) ∈ ϕ ∧ wi < wmax}∪CNF (AL∪AM))
11: if st = sat and wmax = 0 then return (I(ϕ), I)
12: else

13: if st = sat then

14: W :=
∑

{wi | (Ci, wi) ∈ ϕ ∧ wi < wmax}
15: ϕh := harden(ϕ,AM,W )
16: wmax := decrease(wmax, ϕ)

17: else

18: A := {i | (Ci ∨ bi) ∈ (ϕc \ϕh)} ⊲New core

19: A :=
⋃

A′∈cores(AL)

A′∩A6=∅

A′ ⊲New cover

20: k := newbound(AL ∪ ϕw, A)
21: AL := {al ∈ AL | core(al) 6= A} ∪ {

∑
i∈A

wi bi ≥ k}

Given a set AL, the set AM is the set of at-most constrains
∑

i∈A wi bi ≤ k

such that A ∈ SC(cores(AL)) and k is the solution of minimizing
∑

i∈A wi bi
subject to AL and bi ∈ {0, 1}.

The algorithm starts with AL = {w1 b1 ≥ 0, . . . , wm bm ≥ 0} and the
corresponding AM := {w1 b1 ≤ 0, . . . , wm bm ≤ 0} that ensures that the unique
solution of AL ∪ AM is b1 = · · · = bm = 0 with cost 0 5. At every iteration,
the algorithm calls a SAT solver with ϕw ∪ CNF (AL ∪ AM). If it returns sat,
then the interpretation I is a MaxSAT solution of ϕ and we return the optimal
cost I(ϕ). If it returns unsat, then we use the information of the unsatisfiable
core ϕc obtained by the SAT solver to enlarge the set AL, excluding more
interpretations on the bi’s that are not partial solutions of ϕw. Before calling
again the SAT solver, we update AM conveniently, to ensure that solutions to
the new constraints AL∪AM are still minimal solutions of the new AL constraint
set. Notice that in every iteration the set of solutions of {b1, . . . , bm} defined by
AL is decreased, whereas the set of solutions of AM is increased.

5 In the implementation, we do not add a blocking variable to a soft clause till it
appears into a core.

5



One key point in WPM2 is to compute the newbound(AL,A) (line 20) which
corresponds to the following optimization problem:

minimize
∑

i∈A

wi · bi subject to {
∑

i∈A

wi · bi ≥ k} ∪AL (1)

where k = 1 +
∑

{k′ |
∑

i∈A′ wi bi ≤ k′ ∈ AM ∧A′ ⊆ A}.
Notice that by removing the AL constraints in (1), we get the subsetsum

problem [13]. In the original WPM2 algorithm [5], the subsetsum problem is
progressively solved until we get a solution that also satisfies the AL constraints.
This satisfiability check in the original WPM2 is performed with a SAT solver.

In what follows, we present how we have modified the original WPM2
algorithm (fragments in gray in Algorithm 1) by incorporating several
improvements: the application of a stratified approach, the hardening of soft
clauses and the optimization of the subformulas defined by the covers.

3.1 Stratified Approach

As in [4] for WPM1, we apply a stratified approach. The stratified approach
(lines 4, 10, 11 and 16) consists in sending to the SAT solver only those
soft clauses with weight wi ≥ wmax. Then, when the SAT solver returns sat,
if there are still unsent clauses, we decrease wmax to include additional clauses
to the formula. From [4], we also apply the diversity heuristic (line 16) which
supplies us with an efficient method to calculate how we have to reduce the
value of wmax in the stratified approach, so that, when there is a big variety of
distinct weights, wmax decreases faster, and, when there is a low diversity, wmax

is decreased to the following value of wi. Similar approach with an alternative
heuristic for grouping clauses can be found in [32].

3.2 Clause Hardening

The hardening of soft clauses in MaxSAT SAT-based solvers has been previously
studied in [11, 25, 23, 18, 30, 2, 33]. Inspired by these works we study a hardening
scheme for WPM2. While clause hardening was reported to have no positive
effect in WPM1 [2], we will see that it boosts efficiency in WPM2.

The clause hardening (lines 14, 15 and 18) consists in considering hard
those soft clauses whose satisfiability we know does not need to be reconsidered.
We need some lemma ensuring that falsifying those soft clauses would lead us to
suboptimal solutions. In the case of WPM1, all soft clauses satisfying wi > W ,
whereW =

∑

{wi | (Ci, wi) ∈ ϕ∧wi < wmax} is the sum of weights of clauses not
sent to the SAT solver, can be hardened. The correctness of this transformation
is ensured by the following lemma:

Lemma 1 (Lemma 24 in [6]).
Let ϕ1 = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)} be a

MaxSAT formula with cost zero, let ϕ2 = {(C ′

1, w
′

1), . . . , (C
′

r, w
′

r)} be a MaxSAT

6



formula without hard clauses and W =
∑r

j=1
w′

j. Let

harden(w) =

{

w if w ≤ W

∞ if w > W

and ϕ′

1 = {(Ci, harden(wi)) | (Ci, wi) ∈ ϕ1}. Then, cost(ϕ1∪ϕ2) = cost(ϕ′

1∪ϕ2),
and any optimal assignment for ϕ′

1 ∪ ϕ2 is an optimal assignment of ϕ1 ∪ ϕ2.

However, this lemma is not useful in the case of WPM2 because we do not
proceed by transforming the formula, like in WPM1. Therefore, we generalize
this lemma. For this, we need to introduce the notion of optimal of a formula.

Definition 2. Given a MaxSAT formula ϕ = {(C1, w1), . . . , (Cm, wm),
(Cm+1,∞), . . . , (Cm+m′ ,∞)}, we say that k is a (possible) optimal of ϕ if there
exists a subset A ⊆ {1, . . . ,m} such that

∑

i∈A wi = k.

Notice that, for any interpretation I of the variables of ϕ, we have that I(ϕ)
is an optimal of ϕ. However, if k is an optimal, there does not exist necessarily
an interpretation I satisfying I(ϕ) = k. Notice also that, given ϕ and k, finding
the next optimal, i.e. finding the smallest k′ > k such that k′ is an optimal of ϕ
is equivalent to the subset sum problem.

Lemma 2. Let ϕ1 ∪ ϕ2 be a MaxSAT formula and k1 and k2 values such that:
cost(ϕ1∪ϕ2) = k1+k2 and any assignment I satisfies I(ϕ1) ≥ k1 and I(ϕ2) ≥ k2.
Let k′ be the smallest possible optimal of ϕ2 such that k′ > k2. Let ϕ3 be a set
of soft clauses with W =

∑

{wi | (Ci, wi) ∈ ϕ3}.
Then, if W < k′−k2, then any optimal assignment I ′ of ϕ1∪ϕ2∪ϕ3 assigns

I ′(ϕ2) = k2

Proof. Let I ′ be any optimal assignment of ϕ1 ∪ ϕ2 ∪ ϕ3. On the one hand, as
for any other assignment, we have I ′(ϕ2) ≥ k2.

On the other hand, any of the optimal assignments I of ϕ1 ∪ ϕ2 can be
extended (does not matter how) to the variables of var(ϕ3) \ var(ϕ1 ∪ ϕ2), such
that

I(ϕ1 ∪ ϕ2 ∪ ϕ3) = I(ϕ1) + I(ϕ2) + I(ϕ3) ≤ k1 + k2 +W < k1 + k′ (2)

Now, assume that I ′(ϕ2) 6= k2, then I ′(ϕ2) ≥ k′. As any other assignment,
I ′(ϕ1) ≥ k1. Hence, I

′(ϕ1 ∪ ϕ2 ∪ ϕ3) ≥ k1 + k′ > I(ϕ1 ∪ ϕ2 ∪ ϕ3), but this
contradicts the optimality of I ′. Therefore, I ′(ϕ2) = k2.

⊓⊔

In order to apply this lemma we have to consider partitions of the formula
ϕ1∪ϕ2 ensuring cost(ϕ1∪ϕ2) = k1+k2 and I(ϕ1) ≥ k1 and I(ϕ2) ≥ k2, for any
assignment I. This can be easily ensured, in the case of WPM2, if both ϕ1 and
ϕ2 are unions of covers. Then, we only have to check if the next possible optimal
k′ of ϕ2 exceeds the previous one k2 more than the sum W of the weights of
the clauses not sent to the SAT solver. In such a case, we can consider all soft

7



clauses of ϕ2 and their corresponding AM constraint with k2 as hard clauses. In
other words, we do not need to recompute the partial optimal k2 of ϕ2.

Finally, in line 15 of Algorithm 1, function harden(ϕ,AM,W ) returns the
set of soft clauses ϕh that needs to be considered hard based on the previous
analysis according to: the current set of covers AM , the next optimals of these
covers and the sum of the weights W of soft clauses beyond the current wmax,
i.e., not yet sent to the SAT solver.

3.3 Cover Optimization

As we have mentioned earlier, one key point in WPM2 is how to compute the
newbound(AL,A) (line 20). Actually, we can solve to optimality the subformulas
defined by the union of the soft clauses related to the cover A and the hard
clauses.

Definition 3. Given a MaxSAT formula ϕ = {(C1, w1), . . . , (Cm, wm),
(Cm+1,∞), . . . , (Cm+m′ ,∞)} and a set of indexes A, we define the subformula,
ϕ[A], as follows: ϕ[A] = {(Ci, wi) ∈ ϕ | i ∈ A ∨ wi = ∞)}

Solving to optimality ϕ[A] give us the optimal value k = cost(ϕ[A]) for the
AM constraint related to cover A. In order to do this, while taking advantage
of the AL constraints generated so far, we only have to extend the minimization
problem corresponding to the newbound (1) function, by adding ϕw to the
constraints, i.e, newbound(AL ∪ ϕw, A)

6. Notice that newbound(AL ∪ ϕw, A) ≥
newbound(AL,A).

In order to optimize ϕ[A], we can use any exact approach related to
MaxSAT, such as, MaxSAT branch and bound algorithms, MaxSAT SAT-based
algorithms, saturation under the MaxSAT resolution rule, or we can use other
solving techniques such as PB solvers or ILP techniques, etc. Our new WPM2
algorithm is parametric on any suitable optimization solving approach. In this
work, we present three approaches.

The first and natural approach consists in iteratively refining (increasing)
the lower bound on the optimal k for ϕ[A] by applying the subsetsum function
as in the original WPM2. The procedure stops when we satisfy the constraints
AL ∪ ϕw. Notice that since we have included ϕw into the set of constraints, the
solution we will eventually get has to be optimal for ϕ[A].

The second approach consists in iteratively refining (decreasing) the upper
bound following the strategy applied in minisat+ [15], SAT4J [10], qmaxsat [21]
or ShinMaxSat [20]. The upper bound ub is initially set to the sum of the weights
wi of the soft clauses in ϕ[A]. Then, we iteratively test whether k = ub − 1 is
feasible or not. Whenever we get a satisfying assignment, we update ub to the
sum of the weights wi of those soft clauses where bi evaluates to true under the
satisfying assignment. If we get an unsatisfiable answer, the previous ub is the
optimal value for ϕ[A].

6 We can actually exclude from ϕw all the soft clauses not in ϕ[A].

8



The third approach applies a binary search scheme [19, 12, 16]. We
additionally refine the lower bound as in our first approach and the upper bound
as in the second approach.

The worst case complexity, in terms of the number of calls to the SAT
solver, of the new WPM2 algorithm is the number of times that the newbound
function is called (bounded by the number of clauses) multiplied by the number
of SAT calls needed in each call to the newbound function. This latter number
is logarithmic on the sum of the weights of the clauses of the core if we use a
binary search, hence essentially the number of clauses. Therefore, the worst case
complexity, when using a binary search to solve to optimality the subformulas,
is quadratic on the number of soft clauses.

In order to see that the number of calls to the newbound function is bounded
by the number of clauses we just need to recall that WPM2 merges the covers.
Consider a binary tree where the soft clauses are the leaves, and the internal
nodes represent the merges (calls to the newbound function). A binary tree of n
leaves has n-1 internal nodes.

Solving to optimality all the covers can be very costly since these are NP-hard
problems. Depending on the unsatisfiable cores we get in the general loop of the
WPM2 algorithm some covers have to be merged. Therefore, we may argue that
part of the work we did in order to optimize these covers can be useless 7. For
example, a reasonable strategy is to optimize the current cover only if it was
not the result of merging other covers, i.e., when the last unsatisfiable core is
contained into a cover. In the experimental evaluation, we will see that although
the number of solved instances does not vary too much, the mean time for solving
some families can be decreased.

4 Engineering Efficient SMT-based MaxSAT Solvers

We have implemented both the last version of the WPM1 algorithm [2] and the
revisited version of the WPM2 algorithm on top the of the SMT solver Yices.

As we have said, an SMT instance is a generalization of SAT where some
propositional variables are replaced by predicates with predefined interpretations
from background theories. Among the theories considered in the SMT library [9]
we are interested in QF LIA (Quantifier-Free Linear Integer Arithmetic). With
the QF LIA theory we can model the PB constraints that SAT-based MaxSAT
algorithms generate during their execution. Therefore, for the SMT-based
MaxSAT algorithm, we just need to replace the conversion to CNF (line 10
in Algorithm 1) by the proper linear integer arithmetic predicates.

As suggested in [16, 31], we can preserve some learned lemmas from previous
iterations that may help to reduce the search space. In order to do that, we
execute the SMT solver in incremental mode. Within this mode, we can call
the solve routine and add new clauses (assertions) on demand, while preserving
learned lemmas. However, notice that our algorithms delete parts of the formula

7 The related AL constraints can still be kept.

9



between iterations. For example, in lines 7 to 9 of Algorithm 1 we recompute the
set AM, possibly erasing some of the at-most constraints. Therefore, we have to
take care also of any learned lemma depending on them.

The SMT solver Yices gives the option of marking assertions as retractable. If
the SMT solver does not support the deletion of assertions but supports the usage
of assumptions, we can replace every retractable assertion C, with a → C, where
a is an assumption. Before each call, we activate the assumptions of assertions
that have not been retracted by the algorithm. Notice that assertions that do
have been retracted will have a pure literal (a) such that a has not been activated.
Therefore, the solver can safely set to false a deactivating the clause. Moreover,
any learned lemma on those assertions will also include a. For example, Z3 and
Mathsat SMT solvers do not allow to delete clauses, but they allow the use of
assumptions.

5 Experimental Results

In this section we present an intensive experimental investigation on the PMS
and WPMS industrial and crafted instances from the 2012 MaxSAT Evaluation.
We provide results for our new WPM2 SMT-based MaxSAT solver, for a
WPM1 [2] SMT-based MaxSAT solver, the best two solvers for each category of
the 2012 MaxSAT Evaluation, and three solvers which did not participate but
the authors have reported to exhibit good performance. We run our experiments
on a cluster featured with 2.27 GHz processors, memory limit of 3.9 GB and a
timeout of 7200 seconds per instance.

The experimental results are presented in Tables 1 and 2 following the same
classification criteria as in the 2012 MaxSAT Evaluation. For each solver and
family of instances, we present the number of solved instances in parenthesis
and the mean solving time. Solvers are ordered from left to right according to
the total number of solved instances. The results for the best performing solver
in each family are presented in bold. The number of instances of every family
is specified in the column under the sign ’#’. Since different families may have
different number of instances, we also include for each solver the mean ratio of
solved instances.

Our new WPM2 algorithm is implemented on top of the Yices SMT
solver (version 1.0.29). The different versions of WPM2 and corresponding
implementations are named wpm2 where subindexes can be s that stands for
stratified approach with diversity heuristic and h for hardening. Regarding to
how we perform the cover optimization, l stands for lower bound refinement
based on subsetsum, u for upper bound refinement based on satisfying truth
assignment, and b for binary search. Finally, a stands for optimizing all the
covers and c for optimizing only covers that contain the last unsatisfiable core.

Table 1 shows our first experiment, where we evaluate the impact of each
variation on the original wpm2. By using a stratified approach with the diversity
heuristic (wpm2s) we solve some additional instances in all categories having
the best improvement in WPMS crafted. Overall, we solve 74 more instances.

10



Instance set # wpm2 wpm2s wpm2sh wpm2shlc wpm2shla wpm2shbc wpm2shba wpm2shuc wpm2shua

PMS-Industrial
aes 7 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 10.34(1) 1836.54(1) 514.14(1)
bcp-fir 59 83.29(57) 23.44(57) 23.44(57) 40.87(57) 104.75(57) 113.13(57) 146.03(57) 60.91(58) 57.36(58)
bcp-hipp-yRa1 simp 17 504.81(13) 155.95(12) 155.95(12) 95.16(12) 239.17(13) 151.30(13) 813.36(16) 107.24(16) 160.55(16)
bcp-hipp-yRa1 su 38 380.47(19) 164.70(16) 164.70(16) 181.49(18) 667.59(19) 226.66(25) 585.82(28) 555.92(33) 315.87(34)
bcp-msp 64 821.88(25) 756.59(26) 756.59(26) 283.50(28) 606.35(28) 283.78(31) 464.47(30) 711.08(36) 912.70(34)
bcp-mtg 40 1363.97(18) 852.58(23) 852.58(23) 1320.80(28) 786.09(34) 1296.44(32) 940.62(37) 997.38(35) 578.75(39)
bcp-syn 74 60.29(41) 302.54(41) 302.54(41) 296.12(41) 83.15(39) 242.78(42) 69.23(42) 103.21(43) 78.22(42)
circuit-trace-compaction 4 285.74(3) 835.72(4) 835.72(4) 230.85(3) 134.79(4) 145.72(4) 151.41(4) 118.24(4) 129.10(4)
haplotype-assembly 6 2.87(5) 7.17(5) 7.17(5) 9.80(5) 42.86(5) 15.53(5) 51.44(5) 18.28(4) 65.94(5)
pbo-mqc nencdr 84 866.38(84) 821.16(84) 821.16(84) 142.43(84) 107.70(84) 130.90(84) 127.99(84) 245.77(84) 257.06(84)
pbo-mqc nlogencdr 84 362.20(84) 353.14(84) 353.14(84) 24.48(84) 17.19(84) 58.42(84) 65.79(84) 124.43(84) 140.44(84)
pbo-routing 15 0.46(15) 2.14(15) 2.14(15) 3.89(15) 6.59(15) 4.88(15) 6.72(15) 5.42(15) 6.73(15)
protein-ins 12 2626.34(10) 2162.13(9) 2162.13(9) 476.03(12) 552.46(12) 360.76(12) 284.63(12) 234.31(12) 333.85(12)

Total 504 374 376 376 387 394 404 415 425 428
69.6% 70.9% 70.9% 72.5% 76.0% 77.5% 81.4% 81.7% 83.6%

WPMS-Industrial
haplotyping-pedigrees 100 16.01(22) 292.29(25) 242.08(90) 154.12(92) 142.59(92) 199.61(96) 86.67(95) 202.70(98) 176.02(98)
timetabling 26 1017.27(8) 720.89(8) 651.84(8) 1008.59(9) 430.67(9) 1544.43(9) 931.17(8) 932.77(8) 1438.59(9)
upgradeability-problem 100 19.19(100) 19.67(100) 15.27(100) 96.88(100) 375.70(100) 99.51(100) 365.70(100) 97.83(100) 371.96(100)

Total 226 130 133 198 201 201 205 203 206 207
50.9% 51.9% 73.6% 75.5% 75.5% 76.9% 75.3% 76.3% 77.5%

Total Industrial 730 504 509 574 588 595 609 618 631 635
66.1% 67.3% 71.4% 73.0% 75.9% 77.4% 80.2% 80.7% 82.5%

PMS-Crafted
frb 25 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0)
job-shop 3 68.31(3) 63.37(3) 63.37(3) 50.84(3) 53.11(3) 51.29(3) 49.87(3) 88.41(3) 58.75(3)
maxclicque random 96 478.65(76) 471.97(76) 471.97(76) 435.07(77) 533.97(78) 423.89(83) 392.04(82) 565.44(87) 512.17(89)
maxclicque structured 62 779.71(21) 592.07(21) 592.07(21) 511.52(22) 783.37(24) 650.87(25) 838.38(26) 802.09(26) 876.90(27)
maxone 3sat 80 16.42(80) 18.11(80) 18.11(80) 10.90(80) 9.39(80) 5.34(80) 5.29(80) 6.65(80) 6.47(80)
maxone structured 60 156.20(58) 89.15(59) 89.15(59) 14.42(60) 32.46(60) 13.11(60) 46.68(60) 9.24(60) 50.43(60)
min-enc kbtree 42 1607.47(4) 707.46(4) 707.46(4) 2057.16(5) 2086.38(5) 2254.64(6) 1777.41(5) 921.09(6) 1906.23(5)
pseudo miplib 4 122.23(4) 93.95(4) 93.95(4) 109.21(4) 64.35(4) 27.35(4) 37.81(4) 54.30(4) 34.23(4)

Total 372 246 247 247 251 254 261 260 266 268
64.9% 65.1% 65.1% 65.9% 66.5% 67.6% 67.4% 68.4% 68.5%

WPMS-Crafted
auc-paths 86 0.00(0) 376.67(1) 370.25(1) 706.38(33) 546.57(33) 1019.93(74) 948.64(75) 435.71(82) 271.16(82)
auc-scheduling 84 0.00(0) 133.39(51) 136.89(51) 71.37(84) 69.59(84) 2.73(84) 1.66(84) 1.25(84) 1.07(84)
min-enc-planning 56 491.39(25) 141.80(38) 138.29(38) 3.24(56) 2.47(56) 0.75(56) 0.77(56) 0.74(56) 0.80(56)
min-enc-warehouses 18 11.36(1) 3.36(1) 3.43(1) 0.07(1) 0.08(1) 0.04(1) 0.05(1) 1227.86(2) 0.05(1)
pseudo-miplib 12 2936.02(3) 1533.63(3) 1487.40(3) 13.72(3) 11.81(3) 471.93(4) 990.65(5) 299.53(4) 695.31(5)
random-net 74 0.00(0) 0.00(0) 0.00(0) 1041.56(15) 1943.41(17) 1633.69(33) 1529.94(33) 3369.16(17) 3151.03(15)
wcsp-spot5-dir 21 187.40(9) 310.45(10) 248.53(12) 420.10(14) 428.10(14) 495.17(14) 470.92(14) 8.27(14) 113.90(14)
wcsp-spot5-log 21 1067.69(8) 469.38(10) 120.60(9) 100.07(13) 59.16(13) 133.75(14) 48.91(13) 23.84(14) 16.50(14)

Total 372 46 114 115 219 221 280 281 273 271
19.5% 31.9% 32.5% 52.2% 52.6% 62.9% 63.4% 62.0% 62.0%

Total Crafted 744 292 361 362 470 475 541 541 539 539
42.2% 48.5% 48.8% 59.1% 59.5% 65.2% 65.4% 65.2% 65.3%

Total (W)PMS 1474 796 870 936 1058 1070 1150 1159 1170 1174
54.1% 57.9% 60.1% 66.1% 67.7% 71.3% 72.8% 72.9% 73.9%

T
a
b
le

1
.
E
x
p
erim

en
ta
l
resu

lts
o
f
d
iff
eren

t
v
ersio

n
s
o
f
w
p
m
2
.

11



(a) Partial Industrial
Instance set # wpm2shua bincd2 qms0.21g2 pwbo2.1 shinms wpm1 ilp

aes 7 514.14(1) 453.22(1) 3154.99(1) 0.00(0) 0.00(0) 3073.19(1) 1310.95(3)
bcp-fir 59 57.36(58) 44.09(58) 108.17(56) 68.10(56) 13.54(22) 10.87(57) 62.86(59)
bcp-hipp-yRa1 simp 17 160.55(16) 170.49(16) 358.14(17) 174.98(15) 40.66(16) 70.27(16) 666.94(6)
bcp-hipp-yRa1 su 38 315.87(34) 244.97(32) 105.60(35) 97.91(25) 282.26(34) 244.23(28) 0.00(0)
bcp-msp 64 912.79(34) 213.47(38) 451.50(30) 96.14(26) 281.37(22) 1053.47(7) 855.96(37)
bcp-mtg 40 578.75(39) 1.15(40) 0.15(40) 0.57(40) 0.60(40) 8.54(40) 769.27(29)
bcp-syn 74 78.22(42) 28.56(43) 283.64(35) 21.82(39) 86.98(33) 59.30(45) 18.95(71)
circuit-trace-compaction 4 129.10(4) 109.31(4) 45.01(4) 200.11(2) 52.22(4) 118.43(4) 6921.80(1)
haplotype-assembly 6 65.94(5) 728.30(5) 153.22(5) 9.09(5) 0.00(0) 2.63(5) 2124.72(5)
pbo-mqc nencdr 84 257.06(84) 278.45(84) 58.78(84) 222.19(68) 145.71(84) 804.25(54) 1109.89(6)
pbo-mqc nlogencdr 84 140.44(84) 78.58(84) 23.69(84) 71.86(82) 180.37(79) 403.38(55) 508.21(6)
pbo-routing 15 6.73(15) 1.14(15) 3.61(15) 27.67(15) 4.80(15) 1.75(15) 19.68(15)
protein-ins 12 333.85(12) 314.09(3) 128.58(12) 0.11(1) 206.51(4) 1812.03(3) 2.72(1)

Total 504 428 423 418 374 353 330 239
Mean ratio 83.6% 78.2% 83.0% 66.3% 63.6% 68.3% 48.9%

(b) Weighted Partial Industrial
Instance set # wpm2shua wpm1 pwbo2.1 bincd2 maxhs ilp shinms

haplotyping-pedigrees 100 176.02(98) 212.76(93) 123.00(87) 544.80(73) 1089.24(39) 1892.16(18) 1203.99(47)
timetabling 26 1438.59(9) 1347.39(11) 671.45(7) 168.55(8) 1249.85(6) 0.00(0) 2261.00(5)
upgradeability-problem 100 371.96((100) 4.57(100) 32.67(100) 76.40(100) 13.41(100) 19.26(100) 0.00(0)

Total 226 207 204 194 181 145 118 52
Mean ratio 77.5% 78.4% 71.3% 67.9% 54.0% 39.3% 22.1%

(c) Partial Crafted
Instance set # ilp akms ls qms0.21 shinms wpm2shua bincd2 pwbo2.1 wpm1

frb 25 1152.97(13) 159.47(5) 346.73(25) 43.52(23) 0.00(0) 0.00(0) 151.16(15) 0.00(0)
job-shop 3 0.00(0) 0.00(0) 41.51(3) 36.44(3) 58.75(3) 100.43(3) 93.17(1) 835.23(3)
maxclicque random 96 45.13(96) 1.09(96) 269.93(83) 339.30(76) 512.17(89) 85.29(71) 79.45(64) 652.31(59)
maxclicque structured 62 326.51(38) 281.51(41) 800.18(30) 401.45(23) 876.90(27) 109.21(21) 37.07(19) 153.39(13)
maxone 3sat 80 13.12(80) 0.47(80) 198.39(80) 694.52(78) 6.47(80) 8.28(80) 36.97(63) 97.24(80)
maxone structured 60 337.60(59) 482.29(38) 6.35(60) 3.53(59) 50.43(60) 57.42(60) 7.71(60) 718.41(42)
min-enc kbtree 42 162.89(42) 3199.18(34) 248.02(6) 513.97(5) 1906.23(5) 274.79(6) 306.58(2) 2469.35(6)
pseudo miplib 4 34.12(4) 258.91(3) 1.84(4) 3.44(4) 34.23(4) 48.74(4) 93.19(4) 163.61(4)

Total 372 332 297 291 271 268 245 228 207
Mean ratio 76.5% 63.2% 81.1% 77.0% 68.5% 65.3% 59.3% 58.3%

(d) Weighted Partial Crafted
Instance set # ilp wpm1 wpm2shua shinms akms ls pwbo2.1 maxhs bincd2

auc-paths 86 0.49(86) 108.14(63) 271.16(82) 317.62(84) 2.57(86) 110.67(19) 35.41(86) 1414.73(12)
auc-scheduling 84 0.38(84) 1.56(84) 1.07(84) 5.81(84) 68.27(84) 7.65(81) 965.10(78) 141.77(81)
min-enc-planning 56 296.52(56) 2.61(53) 0.80(56) 8.15(52) 141.21(40) 0.46(56) 459.18(31) 32.74(54)
min-enc-warehouses 18 0.49(18) 78.89(17) 0.05(1) 0.43(1) 20.11(2) 3.78(14) 0.18(1) 2.10(1)
pseudo-miplib 12 82.82(3) 157.33(4) 695.31(5) 127.99(5) 0.26(2) 3.97(3) 0.03(1) 1072.69(4)
random-net 74 532.74(59) 4.03(70) 3151.03(15) 0.00(0) 4060.60(8) 42.15(35) 2770.76(10) 0.00(0)
wcsp-spot5-dir 21 42.88(18) 37.70(13) 113.90(14) 743.63(21) 1555.46(6) 61.89(8) 101.11(6) 127.73(12)
wcsp-spot5-log 21 322.93(8) 399.59(14) 16.50(14) 200.73(17) 108.70(5) 1.71(6) 357.32(6) 299.32(13)

Total 372 332 318 271 264 233 222 219 177
Mean ratio 78.6% 77.4% 62.0% 64.8% 45.3% 54.4% 41.6% 45.6%

T
a
b
le

2
.
E
x
p
erim

en
ta
l
resu

lts
o
f
b
est

w
p
m
2
v
ersio

n
co
m
p
a
red

w
ith

o
th
er

so
lv
ers.

12



solvers pms wpms Ind. pms wpms Cra. Total

428 207 635 268 271 539 1174
wpm2shua 83.6 % 77.5 % 82.5 % 68.5 % 62.0 % 65.3 % 73.9 %

330 204 534 207 318 525 1059
wpm1 68.3 % 78.4 % 70.2 % 58.3 % 77.4 % 67.9 % 69.0 %

423 181 604 245 177 422 1026
bincd2 78.2 % 67.9 % 76.3 % 65.3 % 45.6 % 55.5 % 65.9 %

239 118 357 332 332 664 1021
ilp 48.9 % 39.3 % 47.1 % 76.5 % 78.6 % 77.6 % 62.3 %

374 194 568 228 222 450 1018
pwbo2.1 66.3 % 71.3 % 67.2 % 59.3 % 54.5 % 56.9 % 62.1 %

353 52 405 271 264 535 940
shinms 63.6 % 22.1 % 55.8 % 77.0 % 64.8 % 70.9 % 63.4 %

418 291
qms 83.0 % 81.1 %

Table 3. Summary of solved instances and mean ratio % for best solvers.

By adding hardening (wpm2sh) we solve 66 more instances, mainly in WPMS
industrial family haplotyping-pedigrees.

Regarding our three approaches for optimizing the covers, we can see that by
optimizing with subsetsum (wpm2shla) we solve some additional instances in all
categories having the best improvement in WPMS industrial with 18 more and in
WPMS crafted with 106 more. It is important to highlight that optimizing covers
with subsetsum, instead of applying the subsetsum as in the original WPM2
algorithm, leads to a total improvement of 134 additional solved instances, with
respect to wpm2sh.

Optimizing all covers by refining the upper bound (wpm2shua), we get an
additional boost with respect to wpm2shla. We can see that we solve some
additional instances in all categories. We get the best improvement for PMS
industrial, solving 34 additional instances, and for WPMS crafted, 50 more.
Notice that the overall increase with respect to wpm2sh is of 238 additional
solved instances.

Binary search (wpm2shba) improves 10 instances in WPMS crafted with
respect to wpm2shua. But the global performance with respect to wpm2sh, 223,
is not as good as only refining the upper bound (wpm2shua).

Optimizing only covers that contain the last unsatisfiable core solves almost
the same instances as optimizing all covers but improves the average running
time in the WPMS industrial family upgradeability-problem by a factor of 4.

Table 2 shows the results of our second experiment where we compare the best
variation and implementation of our new WPM2 algorithm (wpm2shua) with
several solvers. In particular, we compare with the best two solvers for the PMS
and WPMS industrial and crafted instances of the 2012 MaxSAT Evaluation:
PMS industrial (qms0.21g2, pwbo2.1), WPMS industrial (pwbo2.1 [31, 32],
wpm1 [2] 8), PMS crafted (qms0.21 [21], akms ls [22] and WPMS crafted
(wpm1, shinms [20]). We also compare with three additional MaxSAT solvers:
bincd2 , which is the new version of the BINCD algorithm [19] described in [33],
with the best configuration reported by authors, maxhs from [14], which consists
in an hybrid SAT-ILP approach, and ilp, which translates WPMS into ILP and
applies the MIP solver IBM-CPLEX studio124 [7].

8 We present in this paper a version implemented on top of the Yices SMT solver.

13



Table 2(a) presents the results for the PMS industrial instances. Our
wpm2shua is the first one in solved instances with 428 and mean ratio with
93.6%, closely followed by bincd2 and qms0.21g2.

Table 2(b) presents the results for the WPMS industrial instances. As we can
see, our wpm2shua and wpm1 dominate this category with 207 and 204 solved
instances and 77.5% and 78.4% mean ratio, resp.

As a summary of industrial instances, we can conclude that our wpm2shua
is the best performing solver with a total of 635 solved instances, followed by
bincd2 with a total of 604. We do not have results for any version of qms since
it only works for PMS instances. The closest solver to the search scheme of qms

would be shinms but it does not perform well for WPMS industrial.

Table 2(c) presents the results for the PMS crafted instances. The ilp

approach solves 332 of 372 instances, 35 more than akms ls. This is remarkable
since branch and bound solvers, like akms ls, have always dominated this
category since 2006. PMS solver qms0.21 is the third in solved instances but
the first in mean ratio with 81.1%. Our wpm2shua is the fifth in solved instances
with 268 and the fourth in mean ratio with 68.5%.

Table 2(d) presents the results for the WPMS crafted instances. Again, the
ilp approach is the best one, solving 332 of 372 instances, 14 more than the
second one, wpm1. Our wpm2shua is the third in solved instances with 271 and
the fourth in mean ratio with 62.0%.

As a summary of crafted instances, we can conclude that ilp is the best
performing approach, and our wpm2shua is the second in total solved instances.

In Table 3 we can see a summary of the solved instances and mean ratio per
category for best solvers. We recall that all solvers accept weights except qms

that is only for PMS. Our wpm2shua is the first in solved instances for both PMS
industrial and WPMS industrial. In crafted categories it is the second in total
solved instances. However, for both PMS crafted and WPMS crafted categories
ilp is the first in solved instances. We can conclude that our wpm2shau is the most
robust solver across all four PMS and WPMS industrial and crafted categories,
followed by wpm1 and bincd2.

6 Conclusions and Future Work

From the experimental evaluation, we conclude that the new WPM2 solver is
the best performing solver for PMS and WPMS industrial instances and the best
on the union of PMS and WPMS industrial and crafted instances. In particular,
we have shown that solving to optimality the subformulas defined by covers
really works in practice. As future work, we will study how to improve the
interaction with the optimization of the subformulas. A portfolio that selects
the most suitable optimization approach depending on the structure of the
subformula seems another way of achieving additional speed-ups. Finally, we
have also shown that SMT technology is an underlying efficient technology for
solving the MaxSAT problem.

14



References

1. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: A Proposal for Solving
Weighted CSPs with SMT. In: Proceedings of the 10th International Workshop on
Constraint Modelling and Reformulation (ModRef 2011). pp. 5–19 (2011)

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving sat-based weighted
maxsat solvers. In: Proc. of the 18th Int. Conf. on Principles and Practice of
Constraint Programming (CP’12). pp. 86–101 (2012)

3. Ansótegui, C., Bonet, M.L., Levy, J.: On solving MaxSAT through SAT. In: Proc. of
the 12th Int. Conf. of the Catalan Association for Artificial Intelligence (CCIA’09).
pp. 284–292 (2009)

4. Ansotegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through
satisfiability testing. In: Proc. of the 12th Int. Conf. on Theory and Applications
of Satisfiability Testing (SAT’09). pp. 427–440 (2009)

5. Ansotegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat.
In: Proc. the 24th National Conference on Artificial Intelligence (AAAI’10) (2010)

6. Ansótegui, C., Bonet, M.L., Levy, J.: Sat-based maxsat algorithms. Artif. Intell.
196, 77–105 (2013)

7. Ansotegui, C., Gabas, J.: Solving maxsat with mip. In: CPAIOR (2013)

8. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean
constraints into cnf. In: SAT. pp. 181–194 (2009)

9. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). http://www.SMT-LIB.org (2010)

10. Berre, D.L.: Sat4j, a satisfiability library for java (2006), www.sat4j.org

11. Borchers, B., Furman, J.: A two-phase exact algorithm for max-sat and weighted
max-sat problems. J. Comb. Optim. 2(4), 299–306 (1998)

12. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability
modulo the theory of costs: Foundations and applications. In: TACAS. pp. 99–113
(2010)

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms
(3. ed.). MIT Press (2009)

14. Davies, J., Bacchus, F.: Solving maxsat by solving a sequence of simpler sat
instances. In: Proc. of the 17th Int. Conf. on Principles and Practice of Constraint
Programming (CP’11). pp. 225–239 (2011)

15. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1-4), 1–26 (2006)

16. Fu, Z., Malik, S.: On solving the partial max-sat problem. In: Proc. of the 9th Int.
Conf. on Theory and Applications of Satisfiability Testing (SAT’06). pp. 252–265
(2006)

17. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver.
In: Proc. of the 10th Int. Conf. on Theory and Applications of Satisfiability Testing
(SAT’07). pp. 41–55 (2007)

18. Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: An efficient weighted max-sat
solver. J. Artif. Intell. Res. (JAIR) 31, 1–32 (2008)

19. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: Proc. the 25th National Conference on Artificial
Intelligence (AAAI’11) (2011)

20. Honjyo, K., Tanjo, T.: Shinmaxsat, a Weighted Partial Max-SAT solver inspired
by MiniSat+, Information Science and Technology Center, Kobe University

15



21. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: Qmaxsat: A partial max-sat
solver. JSAT 8(1/2), 95–100 (2012)

22. Kügel, A.: Improved exact solver for the weighted max-sat problem, to appear
23. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving.

Artif. Intell. 172(2-3), 204–233 (2008)
24. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Exploiting cycle structures

in Max-SAT. In: Proc. of the 12th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT’09) (2009)

25. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell.
Res. (JAIR) 30, 321–359 (2007)

26. Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for Max-SAT
solving. In: IJCAI’07. pp. 2334–2339 (2007)

27. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound
computation in Max-SAT solving. In: Proc. the 23th National Conference on
Artificial Intelligence (AAAI’08). pp. 351–356 (2008)

28. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Proc. of the 12th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT’09). pp. 495–508 (2009)

29. Manquinho, V.M., Martins, R., Lynce, I.: Improving unsatisfiability-based
algorithms for boolean optimization. In: Proc. of the 13th Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT’10). Lecture Notes in Computer
Science, vol. 6175, pp. 181–193. Springer (2010)

30. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic
optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3-4), 317–
343 (2011)

31. Martins, R., Manquinho, V.M., Lynce, I.: Exploiting cardinality encodings in
parallel maximum satisfiability. In: ICTAI. pp. 313–320 (2011)

32. Martins, R., Manquinho, V.M., Lynce, I.: Clause sharing in parallel maxsat. In:
LION. pp. 455–460 (2012)

33. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary
search for maxsat. In: Proc. of the 15th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT’12). pp. 284–297 (2012)

34. Nieuwenhuis, R., Oliveras, A.: On sat modulo theories and optimization problems.
In: SAT. pp. 156–169 (2006)

35. Sebastiani, R.: Lazy Satisfiability Modulo Theories. Journal on Satisfiability,
Boolean Modeling and Computation 3(3-4), 141–224 (2007)

36. Silva, J.P.M., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

16


