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Abstract. The problem of defining robot behaviors to completely ad-
dress a large and complex set of situations is very challenging. We present
an approach for robot’s action selection in the robot soccer domain using
Case-Based Reasoning techniques. A case represents a snapshot of the
game at time t and the actions the robot should perform in that situation.
We basically focus our work on the retrieval and reuse steps of the sys-
tem, presenting the similarity functions and a planning process to adapt
the current problem to a case. We present first results of the performance
of the system under simulation and the analysis of the parameters used
in the approach.

1 Introduction

The problem of defining robot behaviors in environments represented as a large
state space is very challenging. The behavior of a robot results from the execution
of actions for different states, if we define acting as the execution of a policy
π : s → a (where s is the current state and a, the action to execute in the given
state). Defining each possible state and the actions to perform at each state, i.e.
defining the policy, is challenging, tedious and impossible to be done completely
manually. Furthermore, we have to deal with a second issue: the nature of the
environment. We are working with real robots that interact with non controllable
elements of the environment, which are constantly moving.

We illustrate our work in the robot soccer domain (Robocup)[2]. In this do-
main, we do not deal with an independent action (e.g. turn 30 degrees, kick,
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walk forward 100cm), but with a sequence of actions that the robots execute to
accomplish their goals (e.g. dribble and shoot). We call this sequence a game
play. Hence, the problem we address is to find out which game plays the robots
should execute during a match. We focus our work on the application of Case-
Based Reasoning techniques to define the actions the robots should perform in
this environment, i.e. we use the CBR approach to generate the π function. We
believe that reproducing game plays from similar past situations (similar envi-
ronment’s description) solves the robot behavior definition problem in an easy
and fast way. The approach followed in this work is to define action cases for
robots to provide them with a set of cases and then have them autonomously
select which case to replay.

The work we present in this paper is centered on modelling the main steps
of a Case-Based Reasoning system [1]: the retrieval step and the reuse step. For
this purpose, we first analyze the environment to choose the main features that
better describe it and then we define an appropriate similarity function. We use
different functions to model the similarity for each feature domain and then an
aggregation function to compute the overall similarity. We also introduce some
initial experiments to test the current implementation based on a single player
with no teammates.

The organization of the paper is as follows. Section 2 presents related work.
Section 3 describes the robot soccer domain. Section 4 introduces the features of
the environment and the formal representation of a case. Section 5 and 6 detail
the retrieval and reuse steps respectively. Section 7 shows the analysis and first
results of the performance of the system. Section 8 discusses the extension of the
current case representation in order to model the dynamics of the game plays.
Finally, Section 9 concludes the work and describes future work.

2 Related Work

Some researchers have already focused their work on using Case-Based Reason-
ing techniques for deciding the best actions a player should execute during a
game. Karol et al. [5] present a model to build high level planning strategies
for AIBO robots. For any game situation, game plays are chosen based on the
similarity between the current state of the play and the cases in the case base.
The paper only presents the general model without any experiment and does not
describe the different steps of the CBR approach. Wendler et al. [15] describe an
approach to select soccer players’ actions based on previously collected experi-
ences encoded as cases. The work is restricted to the Simulation League. Thus,
many parameters they take into account are not considered in our domain, and
also they do not have to deal with the major problems involved when working
with real robots. Regarding the retrieval step, they apply a Case Retrieval Net
model to improve the retrieval of cases in terms of efficiency. Marling et al. [9] in-
troduce three CBR prototypes in their robots team (RoboCats, in the Small Size
League): the first prototype focused on positioning the goalie; the second one,
on selecting team formations; and the third one, on recognizing game states. All
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three systems are mainly based on taking snapshots of the game and extracting
features from the positions of the robots during the game.

We can also find some bibliography dedicated to solve the action selection
problem, but applying other learning techniques. Riedmiller et al. [11] focus
their work on Reinforcement Learning techniques applied to two different levels:
moving level and tactical level. The former refers to learning a specific move, for
example, learning to kick. While the latter refers to which move should be applied
at a certain point, as pass the ball. The work is restricted to the Simulation
League, and they only used the moving level during a competition. With respect
to the tactical level, they experimented with two attackers against one or two
defenders. The attackers used the approach presented, while the defenders used
a fixed policy. Similarly, Sarge et al. [13] present a RL approach to learn low-level
skills. These skills can later be put together and used to emulate the expertise of
experienced players. More precisely, they work on the intercepting the ball skill.
They performed experiments with hand-coded players vs. learning players. They
obtained positive results after one hour of learning. Finally, Lattner et al. [7]
present an approach that creates patterns based on the qualitative information
of the environment. The result of learning is a set of prediction rules that give
information about what (future) actions or situations might occur with some
probability if certain preconditions satisfy. Patterns can be generalized, as well
as specialized. As in the previous papers, this is used in the Simulation League.

Finally, CBR techniques have been also used for purposes other than action
selection. Wendler et al. [14] present a case-based approach for self-localization
of robots based on local visual information of landmarks. The approach is used in
robot soccer, and once again, they use the Case Retrieval Net model. Gabel and
Veloso [3] model an online coach in the Simulation League to determine the team
line-up. Based on previous soccer matches the coach reasons about the current
state of the match and decides which player of his team line-up is assigned to
which of the available players type. Haigh and Veloso [4] solve a path planning
problem with a system that plans a route using a city map. The global path is
created using different cases from the case base. Kruusmaa [6] develops a system
to choose routes in a grid-based map that are less risky to follow and lead faster
to the goal based on previous experience. Ros et al. [12] present an approach
for robot navigation in semistructured unknown environments. Cases represent
landmarks configurations that the robot should avoid in order to reach its target.
Ram and Santamaŕıa [10] and Likhachev and Arkin [8] focus their work on a
CBR approach to dynamically select and modify the robot’s behaviors as the
environment changes during navigation.

3 Robot Soccer Description

The Robocup Soccer competition involves several leagues. One of them is the
one we focus our work on: the Four-Legged League. Teams consist of four Sony
AIBO robots. The robots operate fully autonomously, i.e. there is no external
control, neither by humans nor by computers. The field dimensions are 6m long
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Fig. 1. Snapshot of the Four-Legged League (image extracted from [2])

and 4m wide. There are two goals (cyan and yellow) and four colored markers
the robots use to localize themselves in the field. There are two teams in a game:
a red team and a blue team. Figure 1 shows a snapshot of the field. The robots
can communicate with each other by wireless or even using the speakers and
microphones (although this is not common).

A game consists of three parts, i. e. the first half, a half-time break, and the
second half. Each half is 10 minutes. The teams change the goal defended and
color of the team markers during the half-time break. At any point of the game,
if the score difference is greater than 10 points the game ends. For more details
on the official rules of the game refer to [2].

4 Case Definition

In order to define a case, we first must choose the main features of the envi-
ronment (from a single robot’s point of view) that better describe the different
situations the robot can encounter through a game. Given the domain, we dif-
ferentiate between two features’ types, common in most games:

Environment-based features. They represent the spatial features of a game.
In robot soccer we consider the positions of the robots and the ball as the
basic features to compare different situations, which represent the dynamics
of the environment. These positions are in global coordinates with respect
to the field (the origin corresponds to the center of the field). Regarding
the robots, we consider the heading as a third parameter to describe their
positions. It corresponds to the angle of the robot with respect to the x axis
of the field, i.e. which direction the robot is facing to.

Game-based features. They represent the strategy applied in the game. We
use the time and the score as the main features. As time passes and de-
pending on the current score, the strategy should be more offensive if we
are losing, or a more defensive if we are winning. These features are beyond
robot soccer and are applicable to other games.



Retrieving and Reusing Game Plays for Robot Soccer 51

In the work we present in this paper we always refer to a main robot (we
could think of it as the team’s captain; hereafter we will refer to it either as the
captain) who is responsible for retrieving a case and informing the rest of the
players (teammates) the actions each of them should perform (including himself).
We divide the description of a case in two parts: the problem description and
the solution description. The former refers to the description of the environment
and the game features at time t from the captain’s point of view (we can talk
about a snapshot of the game), while the latter refers to the solution to solve
that problem. Thus, within the soccer domain a case is a 2-tuple:

case = ((R, B, G, Tm, Opp, t, S), A)

where:

1. R: robot’s position (xR, yR) and heading θ (captain’s information).

xR ∈ [−2700..2700]mm. yR ∈ [−1800..1800]mm θ ∈ [0..360)degrees

2. B : ball’s position (xB , yB).

xB ∈ [−2700..2700]mm. yB ∈ [−1800..1800]mm

3. G: defending goal
G ∈ {cyan, yellow}

4. Tm: teammates’ positions.

Tm = {(id1, R1), (id2, R2), (id3, R3)}

where idi corresponds to the teammate identification for teams of 4 robots.
5. Opp: opponents’ positions.

Opp = {opp1, opp2, ..., oppn}

where oppi is a point (x, y) and n ∈ {1, 2, 3, 4} for teams of 4 robots.
6. t : timing of the match. Two halves parts of 10 min.

t ∈ [0..20]min, t ∈ IN

7. S : difference between the goals scored by our team and the opponent’s team.
The maximum difference allowed is 10. The sign indicates if the team is losing
or winning.

S ∈ [−10..10]

8. A: sequence of actions (also seen as behaviors) to perform. Some examples of
individual actions are Turn(φ), Kick(right), Dribble, etc. The combination
of these actions result in different sequences.
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Fig. 2. (a) Situation 1 corresponds to the original description of the case. While situ-
ation 2, 3 and 4 correspond to the symmetric descriptions. (b) Example of a case.

4.1 Case Properties

We can observe two symmetric properties of the ball’s and robot’s positions
and the defending goal: one with respect to the x axis, and the other one, with
respect to the y axis and the defending goal. That is, a robot at point (x, y) and
defending the yellow goal describes situation 1, which is symmetric to situation
2 ((x, −y), defending the yellow goal), situation 3 ((−x, y), defending the cyan
goal) and situation 4 ((−x, −y), defending the cyan goal) (Figure 2(a)).

Similarly, the solution of a problem has the same symmetric properties. For
instance, in a situation where the solution is kick to the left, its symmetric solu-
tion with respect to the x axis would be kick to the right. Thus, for every case
in the case base, we compute its symmetric descriptions, obtaining three more
cases. Figure 2(b) shows an example of the case previously described.

Because of the inevitable spatial nature of robots domains, interestingly a
particular case can be mapped into multiple ones through different spatial trans-
formations. Thus, from a small set of cases, we easily generate a larger set.

5 Retrieval Step

To retrieve a case we must define a similarity function that computes the sim-
ilarity degree between the current problem Pc = ((Rc, Bc, Gc, Oppc, tc, Sc), 〈〉)
and the cases in the case base Ci = ((Ri, Bi, Gi, Oppi, ti, Si), Ai) in the interval
[0..1] (with 0 meaning no similarity at all, and 1 meaning maximum similarity).
Next we introduce the different similarity functions used to compare the features
of a case. We first compute the similarities along each feature (assuming feature
independence). Then we use a filtering mechanism based on these values to dis-
card non-similar cases and finally, we use an aggregation function to compute
the overall similarity obtaining a set of similar cases (if any).

5.1 Similarity Functions

We next define two types of similarity functions based on the features’ types
described in Section 4:
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Fig. 3. 2D Gaussian function with τx = 300 and τy = 250

Environment-based features. We use a 2D Gaussian function to compute
the degree of similarity between two points, p1 = (x1, y1) and p2 = (x2, y2) in
a 2D space. Unidimensional Gaussian functions are defined by two parameters:
one represents the reference value xr with respect to which we compare any
other value x, and the other, the maximum distance τ allowed between two
values to consider to be similar. Hence, low values for τ model very restrictive
similarities, and high values, very tolerant similarities. As we work on a 2D plane,
to define the Gaussian function we have to consider four parameters instead of
two: xr, yr, τx and τy :

G(x, y) = Ae
−( (x−xr)2

2τ2
x

+ (y−yr )2

2τ2
y

)

where xr, yr are the reference values, τx, τy , the maximum distance for each
axis and A is the maximum value of G(x, y). In our case, since we model the
similarities in the interval [0..1], A = 1. Figure 3 shows a 2D Gaussian.

We define the similarity function for two points as:

sim(x1, y1, x2, y2) = e
−( (x1−x2)2

2τ2
x

+ (y1−y2)2

2τ2
y

)

where the point (x1, y1) refers to either the robots’ or the ball’s position in
the problem and (x2, y2) refers to the positions in the case. We do not use the
heading of the robots to compute the similarity value, but for the reuse step.

Regarding the defending goal feature we define a simple binary function:

sim(G1, G2) =
{

1 if G1 = G2
0 if G1 �= G2

where G1 is the defending goal in the problem and G2, the one described in the
case.

Game-based features. We are interested in defining a function that combines
time and score since they are extremely related. As time t passes, depending
on the score of the game, we expect a more offensive or defensive behavior. We
consider as critical situations those where the scoring difference S is minimum,
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Fig. 4. (a) Strategy function for time t = 5. (b) Strategy function over time.

i.e. when the chances for any of the two teams of winning or losing the game are
still high, and thus the strategy (or behavior) of the team might be decisive. We
model the strategy for a 20 minutes game as:

strat(t, S) =

⎧⎨
⎩

t
20(S−1) if S < 0
t
20 if S = 0

t
20(S+1) if S > 0

where strat(t, S) ∈ [−1..1], with -1 meaning a very offensive strategy and 1
meaning a very defensive strategy.

Figure 4(a) depicts the behavior of the team at time t. Positive and negative
scoring differences mean that the team is winning or losing respectively. The
higher the absolute value of S is, the lower the opportunity of changing the cur-
rent score and the behavior of the team. For extreme values of S (in the interval
[−10..10]) the outcome of the function approaches zero. Otherwise, the function
value indicates the degree of intensity, either for a defensive or an offensive be-
havior. As time passes, the intensity increases until reaching maximum values of
1 and -1, (defensive and offensive, respectively). Figure 4(b) shows the behavior
of the function combining both variables.

We define the similarity function for time and score as:

simtS(t1, S1, t2, S2) = 1 − |strat(t1, S1) − strat(t2, S2)|

where t1 and S1 corresponds to the time and scoring features in the problem
and t2 and S1, the features in the case.

5.2 Retrieving a Case

Case retrieval is in general driven by the similarity metric between the new
problem and the saved cases. We introduce a novel method to base the selection
of the case to retrieve. We evaluate similarity along two important metrics:
the similarity between the problem and the case, and the cost of adapting the
problem to the case. Before explaining in more detail these metrics we first
define two types of features: controllable indices and non-controllable indices.
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cB iB( , ) > sim B thrB no no match

oppc oppi
( , ) > throppsim opp no

no match

tc Sc ti Si
( , , , ) > sim tS thr tS no no match

case c case i( , )sim

sim G iGcG( , ) ==1

yes

yes

yes

yes

no no match

Fig. 5. Filtering mechanism to compute the similarity between cases. The subindex c
refers to the current problem, and i, to a case in the case base.

The former ones refer to the captain’s and teammates’ positions (since they
can move to more appropriate positions), while the latter refers to the ball’s
and opponents’ position, the defending goal, time and score (which we cannot
directly modify).

The idea of separating the features into controllable and non-controllable is
that a case can be retrieved if we can modify part of the current problem de-
scription in order to adapt it to the description of the case. Given the domain we
are working on, the modification of the controllable features leads to a planning
process where the system has to define how to reach the positions (or adapted
positions as detailed in Section 6) of the captain and the teammates indicated
in the retrieved case in order to reuse its solution.

Similarity Value. We compute the similarity between the current problem Pc

and a case Ci using the non-controllable features. For this purpose, we filter
the case based on the individual features similarities (Figure 5). If the similar-
ities are all above the given thresholds, we then compute the overall similar-
ity value between the case and the problem. Otherwise, we consider that the
problem does not match the case. We discuss the values of these thresholds in
Section 7.

In order to compute the opponents’ similarity value we first must determine
the correspondence between the opponents of the problem and the case, i.e.
which opponent oppi from the problem description corresponds to which oppo-
nent oppj in the case description. For this purpose, we use a Branch&Bound
search algorithm in a binary tree. Each node of the tree represents either the
fact of considering a match between the pair (oppi, oppj), or the fact of not con-
sidering the match between this pair. As soon as the algorithm finds the optimal
correspondence, we obtain the similarity value for each pair of opponents using
the Gaussian function.

Finally, we compute the overall similarity sim between the current problem
and the case:

sim = f(simB, simtS , simOpp1 , . . . , simOppn)
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where n is the number of opponents in the case, and each argument of f corre-
sponds to the similarity value obtained for each feature. In Section 7 we discuss
the most appropriate aggregation function f .

Cost Value. This measure defines the cost of modifying the controllable fea-
tures of the problem Pc to match the case Ci. We represent the cost of adapting
the problem to a case as the maximum Euclidean distance dist between the
players’ positions in the current problem and the adapted positions in the case
(after obtaining the correspondence between the players using the same method
as for the opponents):

cost(Pc, Ci) = max
j∈{R}∪Tm

{dist(posj, pos′j)}

where R corresponds to the captain, Tm = {tm1, tm2, tm3}, to the teammates,
posj represents the position of j in the problem description and pos′j , the position
of j in the case description.

After computing the similarities between the problem and the cases, we obtain
a list of potential cases from where we must select one for the reuse step. We
consider a compromise between the similarity degree between the problem and
the case and the cost of adapting the problem to the case. The properties for the
best choice are to have a very similar case and to apply little adaptations to the
problem to reuse the solution of the case, while the worst choice would be low
similarity and high cost (the opposite situation). But we also have to avoid those
situations where even though the similarity is high, the problem also needs a big
adaptation (high cost) before reusing the selected case.

We then select the most similar case from the list of cases with cost lower
than a threshold thrcost:

Cr = arg max{sim(Pc, Ci) | cost(P, Ci) < thrcost}, ∀Ci ∈ LS

where LS is a list of cases with similarity over 0.4 and Cr is the case retrieved.

6 Case Reuse

After selecting the best case, the next step is to reuse its solution. Before execut-
ing the actions indicated in the case, we first adapt the current problem to the
description of the case. To this end we modify the controllable features (captain
and teammates) to those positions where the relation between the features is
the same as the one described in the case. We take the ball as the reference
point in the field. From the case retrieved we obtain the relative positions of
the players with respect to the ball. Hence, the adapted positions of the players
for the current problem are the transformations of these relative coordinates to
global coordinates, having the current position of the ball as the new reference
point.

Figure 6 shows an example. The relative position of the robot with respect
to the ball (Bi = (750, 300)) in the case retrieved is Rr

i = (−300, 0). Thus, the
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Fig. 6. The case description depicted in solid lines (Ri, Bi), and the problem descrip-
tion, in dashed lines (Rc, Bc). Adapting the position of the robot with respect to the
ball’s position described in the problem.

robot’s adapted global position in the current problem is Rc = (350, 100) since
the ball’s position is Bc = (650, 100). Briefly, the adaptation of the problem
description is based on positioning the controllable features with respect to the
ball’s position, instead of maintaining the original positions indicated in the case.
Once we compute these new locations, the robot retrieving the case (captain)
informs the rest of the teammates about the positions they should take.

7 Empirical Evaluation

We discuss the different values for the thresholds, the aggregation function we
have introduced in Section 5.2 and the first results of the system.

Environment-based features. We have used a Gaussian to model the simi-
larity function for this type of features. As we already mentioned, the function
has two parameters, τx, τy, which are used to model the maximum distance be-
tween two points that we consider to be similar. These parameters define an
ellipse (the projection of the Gaussian in the plane XY) with radius τx and τy .
All points contained in this ellipse have a G(x, y) > 0.6. Thus, we use this value
as the threshold for the ball, thrB, and opponents similarity, thropp. To set the
τ values for the ball, we empirically observed that the maximum distance we
consider the ball’s position is similar to a reference point is 30cm. for the x axis,
and 25cm. for the y axis (since the field has a rectangular shape). Thus, τx = 300
and τy = 250. Regarding the opponents’ we consider a more flatter function be-
cause the imprecision of their positions is higher than the one for the ball. We
then fix both τx and τy to 350.

Game-based features. We are specially interested in distinguishing between
those situations that take place at the end of the game with score difference close
to 0 from those that happen at the beginning of the game, since the strategy can
be very different in each of these situations. After analyzing the values obtained
by the strategy function described in Section 5.1, we observed that comparing
two situations, fixing one to t1 = 0 and S1 = 0 and varying the other one through
all the possible values, the following situations occur:

– first half of the game and no matter which score:

t2 ∈ [0..10) ∧ S2 ∈ [−10..10], simtS(t1, S2, t2, S2) > 0.7
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– first part of the second half and equal scoring:

t2 ∈ [10..14] ∧ S2 = 0, simtS(t1, S2, t2, S2) < 0.7

– second part of the second half and 1 goal difference:

t2 ∈ [15..18] ∧ S2 ∈ [−1..1], simtS(t1, S2, t2, S2) < 0.7

– ending game and 2 goals difference:

t2 ∈ [19..20] ∧ S2 ∈ [−2..2], simtS(t1, S2, t2, S2) < 0.7

As we can see, fixing the threshold thrtS to 0.7 allows us to separate the situations
previously mentioned.

Aggregation function. We tested four different functions: the mean, the
weighted mean, the minimum and the harmonic mean. The minimum function
results in a very restrictive aggregation function since the overall outcome is
only based on the lowest value. Hence, lower values penalize high values rapidly.
Regarding the harmonic mean, for similar values, its behavior is closer to the
mean function. While for disparate values, the lower values are highly considered
and the outcome decreases (although not as much as with the minimum func-
tion) as more lower values are taken into account. On the contrary, the mean
function rapidly increases the outcome for high values, and does not give enough
importance to low values. Finally, the weighted mean does not make difference
between low and high values either, since the importance of each value is given
by their weights. If a low value has a low weight and the rest of the values are
all high, the outcome is slightly affected and results high anyway.

We are interested in obtaining an aggregation function that considers all val-
ues as much as possible but highlighting the lower ones. This is an important
property as the values we are considering are similarity values. Hence, if one of
the features has a low similarity, the overall similarity has to reflect this fact
decreasing its value. Therefore, we use the harmonic mean as the aggregation
function f :

f(x1, ..., xn) =
n∑n

i=1
1
xi

where xi corresponds to the individual similarity values of the features.

Cost threshold. We consider worth adapting a problem to a case if the dis-
tances the robots have to travel from their original positions to the adapted
ones are short enough so the environment changes as little as possible during
this time. After observing the robots movements, we fixed the maximum distance
to translate them to 1m. Their current average velocity is 350 mm per second.
Hence, walking for 1m. takes around 2.8 seconds. Even though for now we are
fixing this value to test the current system, we have to take into account that
the threshold also depends on the opponents we are playing with. The faster
they are, the lower the threshold should be.
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Fig. 7. (a) shows simple cases which allow the robot (depicted with filled head) to
kick the ball towards the goal at every point of the field, (b) and (c) correspond to
more complex situations where we have included one or two opponents (depicted with
non-filled heads) and our robot attacking either from the front or the corners, and (d)
shows some of the problems we used to test the system so far

Experiments. We manually defined 90 cases with one player, i.e. no teammates
so far, varying the number of opponents (from 0 to 2), the time and the score
difference. We also tested 50 problems created randomly and then manually
labeled them to verify if the correct cases were retrieved using the system. We
indeed obtained always the right ones, i.e. the system retrieved the case indicated
in the labeled problem. It also computed the adapted position the robot should
take and the actions to perform from that point on. Figure 7 depicts a set of the
cases and problems created.

8 Extending the Case Definition

As previously mentioned, the solution of a case is a sequence of actions. So far
we have been comparing snapshots of the current game with cases that describe
the initial state of a game play. We believe that it would be also interesting
to consider parts of a game play (the solution of a case) as part of the problem
description of a case. The solution represents the (discrete) trajectory performed
by the robots with their related actions. Thus, instead of comparing the current
problem with the initial state of the case, we could compare it with the execution
of the solution and reuse the solution from the closest point. This way, we can
also avoid useless movements (e.g. going backwards to reach the initial position
and then going forward again executing the solution’s actions).
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Fig. 8. Case description (solid lines) and problem description (dashed lines)

To this end, cases should have a more complex structure. We should define
them by means of a graph structure or a sequence of nodes, where each node
represents a situation Si (description of the environment at time t) and arcs
represent the associated actions to go from one node to the other. Then the
retrieval step would have to consider each node Si as a potential similar case to
solve the new problem.

Given the problem and the case depicted in Figure 8, instead of position-
ing the robot in the initial state of the case (S1), we could move it to the
adapted position indicated in S2 and then continue reusing the solution from
this point.

9 Conclusion and Future Work

We have presented the initial steps towards a Case-Based Reasoning system
for deciding which actions a robot should execute in the robot soccer domain.
More precisely, we have focused our work on the retrieval and reusing steps
of the system. While we contribute concretely to robot soccer, several of the
features of the approach are applicable to general game-based adversarial envi-
ronments.

We have defined the concept of case as well as the features that describe
the state of a game, dividing them in two types: the environment-based features
and the game-based features. We have discussed the similarity functions for the
different features and we have tested different aggregation functions to compute
the overall similarity. We have introduced a separation between the controllable
and the non-controllable case indices to compute two metrics: the similarity
and the cost. We select the retrieved case based on a compromise between the
similarity and the cost of adapting the current problem to a case. Regarding the
case reuse, we have detailed the adaptation of the description of the problem to
the case retrieved and the reusing process of the solution. To test these first steps,
we have designed a simulation interface to easily modify the different functions
and parameters described.

As future work, we will continue on finishing the extension of the case descrip-
tion we have proposed in Section 8. After further testing the proposed approach
in simulation, we will move our case-based approach to real robots.
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