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Abstract

We show in this paper that the (com-
mutative integral bounded) semilat-
ticed pseudocomplemented monoids
PMs` and the involutive algebras
of this class, which are structures
that appear in the semantical stud-
ies of t-norm based logics, are struc-
tures which are strongly linked with
Gentzen systems without contrac-
tion and also with their correspond-
ing external deductive systems.

Keywords: Substructural log-
ics, t-norm based logics, algebraic
logic, external deductive system, al-
gebraization of Gentzen systems,
residuated lattices, commutative in-
tegral bounded semilatticed pseudo-
complemented monoids, Grǐsin alge-
bras.

1 Introduction

Monoidal logic ML was introduced by
Höhle [13] in the context of residuated struc-
tures and by Ono and Komori [21], under the
name HBCK , in the context of logics with-
out contraction (see also [1, 10, 11]). It is
usually given, up to equivalence, in the lan-
guage 〈∨,∧, ∗,→,¬, 0, 1〉. When the axiom
(ϕ → ψ)∨ (ψ → ϕ) is added to ML we obtain

∗ This study is partially supported by Grant
BFM2001-3329 from the Spanish DGES and Grant
2001SGR-00017 from the Generalitat de Catalunya.
The first author is also supported by the Catalan
Grant FI2000 00100.

the monoidal t-norm based logic MTL intro-
duced by Esteva and Godo in [7]. Jenei and
Montagna proved in [14] that this logic is the
logic determined by left-continuous t-norms.
It was shown in [1] that ML, denoted there by
IPC∗\c, is the external deductive system as-
sociated with the Gentzen system determined
by the sequent calculus FLew [18, 20].

This paper contains a summary of the results
obtained in [5] on the fragment of ML with-
out implication and the fragment of ML with-
out implication and without conjunction, and
their relation with the axiomatic extension of
ML obtained by adding the axiom ¬¬ϕ → ϕ.
The main theorems of the paper are the ones
that deal with algebraization of Gentzen sys-
tems, i.e., Theorems 20-22.

Let us describe the content of the paper. In
Section 2 we remind the reader of the basic
known facts about algebraization of Gentzen
systems and the definitions of the logical sys-
tems from the literature that are used in this
paper. In Section 3 we introduce the logical
systems that we are interested in. In the next
section, the algebras associated to these log-
ical systems are introduced and we analyze
several of their results. In Section 5 we dis-
cuss the algebraization theorems on the logi-
cal systems studied and several consequences
of these theorems.

2 Basic concepts

2.1 Algebraizable Gentzen systems

First of all we recall some notions concerning
Gentzen systems and their algebraization (see



[22, 23, 8] for more information).

Let FmL be the set of L-formulas of a proposi-
tional language L, and α, β ⊆ ω. A L-sequent
of type 〈α, β〉 is a pair 〈Γ, ∆〉 of finite se-
quences of L-formulas such that length(Γ) ∈
α and length(∆) ∈ β. We will write Γ ⇒ ∆
instead of 〈Γ, ∆〉. The set of L-sequents of
type 〈α, β〉 will be denoted by Seq

〈α,β〉
L . A

Gentzen system of type 〈α, β〉 is a pair G =
〈L,`G〉, where `G is a finitary consequence re-
lation on the set FmL that is invariant under
substitutions.

An (L, 〈α, β〉)-inference rule is a set r ⊆
Pfin(Seq

〈α,β〉
L ) × Seq

〈α,β〉
L that is obtained as

the closure under substitutions of a pair
〈T, Γ ⇒ ∆〉 ∈ Pfin(Seq

〈α,β〉
L ) × Seq

〈α,β〉
L . We

will use the pair 〈T, Γ ⇒ ∆〉 to refer to the
rule that it generates. We will often write
this pair as

T

Γ ⇒ ∆
.

Axioms (also initial sequents) are a special
kind of rule, the ones of the form 〈∅,Γ ⇒ ∆〉.
A rule r = 〈T, Γ ⇒ ∆〉 is derivable in a
Gentzen system G = 〈L,`G〉 if T `G Γ ⇒ ∆.
And a sequent Γ ⇒ ∆ is called derivable
in a Gentzen system if the rule 〈∅, Γ ⇒ ∆〉
is derivable in it. Most of the literature on
Gentzen systems focusses only on the deriv-
able sequents. The main difference between
our approach and the standard one in the
literature is that we aim to analyze all the
consequence relation. A weaker notion than
the derivability of a rule is its admissibility.
A rule r is admissible in a Gentzen system
if for every 〈T, Γ ⇒ ∆〉 ∈ r and every sub-
stitution s, the derivability of all sequents in
{s(Γ′ ⇒ ∆′) : Γ′ ⇒ ∆′ ∈ r} imply the deriv-
ability of s(Γ ⇒ ∆).

An (L, 〈α, β〉)-sequent calculus is a set of
(L, 〈α, β〉)-rules. Every (L, 〈α, β〉)-sequent
calculus LX determines a Gentzen system
GLX = 〈L,`LX〉 of type 〈α, β〉 in the following
way: given T ∪ {Γ ⇒ ∆} ⊆ Seq

〈α,β〉
L , Γ ⇒ ∆

follows from T in Gentzen system GLX (and
we write T `LX Γ ⇒ ∆) iff there is a finite
sequence of sequents Γ0 ⇒ ∆0, . . . , Γn−1 ⇒
∆n−1 (called a proof of Γ ⇒ ∆ from T ) such

that Γn−1 ⇒ ∆n−1 = Γ ⇒ ∆, and for every
i < n some of the following conditions hold:

1. Γi ⇒ ∆i ∈ T ,
2. Γi ⇒ ∆i is obtained from the set
{Γj ⇒ ∆j : j < i} by means of a rule r
of the calculus LX, i.e., 〈T ′, Γi ⇒ ∆i〉 ∈
r ∈ LX for some T ′ ⊆ {Γj ⇒ ∆j : j < i}.

In this case we will say that GLX is the
Gentzen system determined by the sequent
calculus LX. Remember that we use the rules
of the calculus to obtain sequents from sets of
sequents (and not only from the empty set).

A Gentzen system G = 〈L,`G〉 of type 〈α, β〉
is algebraizable iff there is a quasivariety K,
a map τ from Seq

〈α,β〉
L into subsets of L-

equations and a map ρ from L-equations into
subsets of Seq

〈α,β〉
L such that:

1. T `G Γ ⇒ ∆ iff {τ(Γ′ ⇒ ∆′) : Γ′ ⇒
∆′ ∈ T} |=K τ(Γ ⇒ ∆),

2. ϕ ≈ ψ =||=K τ(ρ(ϕ ≈ ψ)),
3. Θ |=K ϕ ≈ ψ iff ρ(Θ) `G ρ(ϕ ≈ ψ),
4. Γ ⇒ ϕ a`G ρ(τ(Γ ⇒ ϕ)),

where |=K is the equational logic associated
with the quasivariety K. The quasivariety K
is uniquely determined by the Gentzen sys-
tem, and it is called the equivalent algebraic
semantics for the Gentzen system. The def-
inition that one can find in [23] is slightly
different. There, some additional constraints
are imposed on τ and ρ, which essentially
say that these translations are given schemat-
ically. But as far as the results of this paper
are concerned we can forget these constraints.
One of the interesting consequences of the
general theory on algebraization of Gentzen
systems is that if K is the equivalent algebraic
semantics for a Gentzen system, then there is
a characterization of the K-congruences of the
L-algebras (see [22, Theorem 2.23] for the de-
tails).

Remark. Throughout the paper we will use
the notion of deductive system and the al-
gebraization of deductive systems, as in [4].
A deductive system is essentially the same as
a Gentzen system of type 〈{0}, {1}〉, and its
algebraization corresponds to the algebraiza-
tion considered as a Gentzen system.



Let us recall the notion of the external de-
ductive system associated with a Gentzen sys-
tem [2]. The external deductive system asso-
ciated with a Gentzen system G of type 〈α, β〉,
with 0 ∈ α, 1 ∈ β, is the deductive sys-
tem 〈FmL,`〉 defined in the following way:
given Σ ∪ {ϕ} ⊆ FmL, Σ ` ϕ iff there is
a finite subset {ϕ1, . . . , ϕn} ⊆ Σ such that
∅ ⇒ ϕ1, . . . , ∅ ⇒ ϕn `G ∅ ⇒ ϕ. If the
Gentzen system is determined by a sequent
calculus, we also call it the external deductive
system associated with this sequent calculus.

2.2 The calculi FLew and CFLew

We now recall two Gentzen calculi that are
well known in the literature. We will use them
in the rest of the paper.

Definition 1. (Cf. [18]) Let L be the propo-
sitional language 〈∨,∧, ∗,→,¬, 0, 1〉 of type
〈2, 2, 2, 2, 1, 0, 0〉. CFLew is the calculus of
L-sequents of type (ω, ω) defined by the fol-
lowing axioms and rules1:
Axioms:

ϕ ⇒ ϕ (Ax.1) 0 ⇒ ∅ (Ax.2) ∅ ⇒ 1 (Ax.3)

Structural rules:

Γ ⇒ ϕ, Θ Σ, ϕ, Π ⇒ ∆

Σ, Γ, Π ⇒ ∆, Θ
(Cut)

Γ, ϕ, ψ, Σ ⇒ ∆

Γ, ψ, ϕ, Σ ⇒ ∆
(e ⇒)

Γ ⇒ Λ, ϕ, ψ, Θ

Γ ⇒ Λ, ψ, ϕ, Θ
(⇒ e)

Γ, Σ ⇒ ∆

Γ, ϕ, Σ ⇒ ∆
(w ⇒)

Γ ⇒ Λ, Θ

Γ ⇒ Λ, ϕ, Θ
(⇒ w)

Rules of introduction of connectives:

Γ, ϕ, Σ ⇒ ∆ Γ, ψ, Σ ⇒ ∆

Γ, ϕ ∨ ψ, Σ ⇒ ∆
(∨ ⇒)

Γ ⇒ Λ, ϕ, Θ

Γ ⇒ Λ, ϕ ∨ ψ, Θ
(⇒ ∨1)

Γ ⇒ Λ, ψ, Θ

Γ ⇒ Λ, ϕ ∨ ψ, Θ
(⇒ ∨2)

Γ, ϕ, Σ ⇒ ∆

Γ, ϕ ∧ ψ, Σ ⇒ ∆
(∧1 ⇒)

Γ, ψ, Σ ⇒ ∆

Γ, ϕ ∧ ψ, Σ ⇒ ∆
(∧2 ⇒)

Γ ⇒ Λ, ϕ, Θ Γ ⇒ Λ, ψ, Θ

Γ ⇒ Λ, ϕ ∧ ψ, Θ
(⇒ ∧)

Γ, ϕ, ψ, Σ ⇒ ∆

Γ, ϕ ∗ ψ, Σ ⇒ ∆
(∗ ⇒)

Γ ⇒ ϕ, Λ Σ ⇒ ψ, Θ

Γ, Σ ⇒ ϕ ∗ ψ, Λ, Θ
(⇒ ∗)

Γ ⇒ Λ, ϕ Σ, ψ, Π ⇒ ∆

Σ, Γ, ϕ → ψ, Π ⇒ Λ, ∆
(→⇒)

1Strictly speaking each of these rules is a family of
rules, and not only a rule.

ϕ, Γ ⇒ ψ, Θ

Γ ⇒ ϕ → ψ, Θ
(⇒→)

Γ ⇒ ϕ, Θ

¬ϕ, Γ ⇒ Θ
(¬ ⇒)

Γ, ϕ ⇒ Θ

Γ ⇒ ¬ϕ, Θ
(⇒ ¬)

And FLew is the calculus of L-sequents of
type (ω, {0, 1}) obtained by the same axioms
and rules (now, the right-part of the sequents
has at most one formula).

Note that the propositional fragment of the
calculus L0K in [12] and also the calculus
LK0 in [17] are the same, up to definitional
equivalence, as CFLew.

Theorem 2. ([18, Theorem 6]) The calculi
FLew and CFLew both satisfy the cut elimi-
nation theorem.

2.3 The deductive systems IPC∗\c
and CPC∗\c

Here we recall the deductive systems from the
literature that we will need. These systems
are intuitionistic propositional logic without
contraction IPC∗\c and classical proposi-
tional logic without contraction CPC∗\c.
Definition 3. (Cf. [1]) IPC∗\c is the de-
ductive system in the language L = 〈∨,∧, ∗,
→,¬, 0, 1〉 of type 〈2, 2, 2, 2, 1, 0, 0〉, defined by
the rule Modus Ponens and the following ax-
ioms:
(A1) ϕ → 1
(A2) (ϕ → ψ) → ((γ → ϕ) → (γ → ψ))
(A3) (ϕ → (ψ → γ)) → (ψ → (ϕ → γ))
(A4) ϕ → (ψ → ϕ)
(A5) (ϕ ∧ ψ) → ϕ
(A6) (ϕ ∧ ψ) → ψ
(A7) ϕ → (ψ → (ϕ ∧ ψ))
(A8) ((γ → ϕ) ∧ (γ → ψ)) → (γ → (ϕ ∧ ψ))
(A9) ψ → (ϕ ∨ ψ)
(A10) ϕ → (ϕ ∨ ψ)
(A11) (ϕ → γ) → ((ψ → γ) → ((ϕ ∨ ψ) → γ))
(A12) ϕ → (ψ → (ϕ ∗ ψ))
(A13) (ϕ → (ψ → γ)) → ((ϕ ∗ ψ) → γ)
(A14) 0 → ϕ
(A15) ¬ϕ → (ϕ → ψ)
(A16) (ϕ → ψ) → (¬ψ → ¬ϕ)
(A17) ϕ → ¬¬ϕ.

And CPC∗\c is the deductive system, in the
same language, obtained by adding the axiom

(A18) ¬¬ϕ → ϕ.



It can be shown that IPC∗\c is, up to defini-
tional equivalence, the same deductive system
as monoidal logic [13] and HBCK [21]. And
CPC∗\c is, up to definitional equivalence, the
propositional fragment of the so called Grišin
Logic (see [12] and the references therein) and
also of the system aMALL, the affine Multi-
plicative Additive Linear Logic [9].

3 What we study

In this section we introduce the logical sys-
tems that we study throughout the paper.
Let us begin with those that are introduced
through a Gentzen calculus.

Definition 4. The calculus obtained by
deleting from FLew the rules of introduc-
tion of the additive conjunction and the im-
plication will be denoted by FLew[∨, ∗,¬]2,
and the calculus obtained by deleting from
FLew the rules for the implication will be de-
noted by FLew[∨,∧, ∗,¬]. The Gentzen sys-
tems associated to the calculus FLew[∨, ∗,¬]
and FLew[∨,∧, ∗,¬] will be denoted by
GFLew [∨, ∗,¬] and GFLew [∨,∧, ∗,¬], respec-
tively. The corresponding external deductive
systems will be denoted by Se[∨, ∗,¬] and
Se[∨,∧, ∗,¬].

Definition 5. In the same way, but
replacing FLew with CFLew, we can
introduce CFLew[∨, ∗,¬],CFLew[∨,∧, ∗,¬],
GCFLew [∨, ∗,¬] and GCFLew [∨,∧, ∗,¬].

It can easily be seen that GCFLew [∨, ∗,¬]
and GCFLew [∨,∧, ∗,¬] are, up to definitional
equivalence, the same Gentzen system. For
this reason, in the rest of the paper we will
refer only to GCFLew [∨, ∗,¬].

Obviously, as FLew and CFLew

satisfy the cut elimination,
FLew[∨, ∗,¬],FLew[∨,∧, ∗,¬],CFLew[∨, ∗,¬]
and CFLew[∨,∧, ∗,¬] also satisfy it.

Now it is time to introduce the other deduc-
tive systems that we will study.

Definition 6. The 〈∨, ∗,¬, 0, 1〉-fragment
2It would be better to talk about FLew[∨, ∗,¬, 0, 1]

because this is the language where this calculus is
given, but for the sake of simplicity we will not do
so.

of IPC∗\c is the deductive system
〈〈∨, ∗,¬, 0, 1〉,`〉 given by:

Σ ` ϕ iff Σ `IPC∗\c ϕ.

In the same way we can introduce the
〈∨,∧, ∗,¬, 0, 1〉-fragment of IPC∗\c, the
〈∨, ∗,¬, 0, 1〉-fragment of CPC∗\c, and the
〈∨,∧, ∗,¬, 0, 1〉-fragment of CPC∗\c.
Notice that we do not give Hilbert-style ax-
iomatizations of the previous fragments of
IPC∗\c. In fact this is an open problem.
The difficulties come from Theorem 27. Al-
though we do not give Hilbert-style axiomati-
zations of the previous fragments of CPC∗\c,
it is quite simple to find them. The reason is
that CPC∗\c and its 〈∨, ∗,¬, 0, 1〉-fragment
are definitionally equivalent.

4 The associated algebras

Throughout the section, we introduce the al-
gebraic structures needed to study the log-
ical systems so far presented. First of all,
we remember the definition of residuated lat-
tice, the algebraic counterpart of intuitionistic
propositional logic without contraction.
Definition 7. (Cf. [16]) An algebra A =
〈A,∨,∧, ∗, →,¬, 0, 1〉 of type 〈2, 2, 2, 2, 1, 0, 0〉
is a residuated lattice if it satisfies:

1. 〈A,∨,∧, 0, 1〉 is a bounded lattice with
associated order ≤,

2. 〈A, ∗, 1〉 is a commutative monoid,
3. x ∗ y ≤ z iff y ≤ x → z (the law of resid-

uation),
4. x ∗ y ≤ 0 iff y ≤ ¬x (the law of pseudo-

complementation associated with ∗).
The class of residuated lattices is denoted by
RL.

Sometimes in the literature these struc-
tures have been called commutative integral
bounded residuated lattice, e.g., [19, 20, 15].
The negation ¬ is called the pseudocomple-
ment associated with ∗. It can be seen as
a generalization of the concept of pseudo-
complement defined traditionally in the con-
text of the bounded distributive lattices [3,
page 152], and it is characterized by the fact
that ¬x = x → 0.



Now it is time to introduce the two new fam-
ilies of algebras that we need in order to ana-
lyze our logical systems.

Definition 8. An algebra A =
〈A,∨, ∗,¬, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 is a
(commutative integral bounded) semilatticed
pseudocomplemented monoid if it satisfies:

1. 〈A,∨, 0, 1〉 is a bounded semilattice with
associated order ≤,

2. 〈A, ∗, 1〉 is a commutative monoid,

3. x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z),

4. x ∗ y ≤ 0 iff y ≤ ¬x (the law of pseudo-
complementation associated with ∗).

The class of semilatticed pseudocomple-
mented monoids is denoted by PMs`.

Definition 9. An algebra A =
〈A,∨,∧, ∗,¬, 0, 1〉 of type 〈2, 2, 2, 1, 0, 0〉
such that the reduct is a semilatticed pseu-
docomplemented monoid and 〈A,∨,∧〉 is
a lattice is called a (commutative inte-
gral bounded) latticed pseudocomplemented
monoid. The class of these algebras is
denoted by PM`.

The authors are indebted to Roberto Cignoli
for a personal communication concerning the
following result.

Theorem 10. The classes PMs` and PM`

are varieties. They are axiomatized by the
equations involved in their definitions plus the
following equations (which replace the law of
pseudocomplementation):

1. ¬1 ≈ 0,

2. ¬0 ≈ 1,

3. (x ∗ ¬(y ∗ x)) ∨ ¬y ≈ ¬y.

It is easy to see that the reducts of residuated
lattices are PMs`-algebras and PM`-algebras.
In fact, we have the following improvements.

Theorem 11. Every PMs`-algebra is
embeddable into a complete residuated
lattice. Thus, the class PMs` is the
closure under isomorphism and subal-
gebras of the class of algebras {A : A =
〈A,∨, ∗,¬, 0, 1〉 and there are operations ∧,→
such that 〈A,∨,∧, ∗,→,¬, 0, 1〉 ∈ RL}.

Theorem 12. Every PM`-algebra is em-
beddable into a complete residuated lat-
tice. Therefore, the class PM` is the
closure under isomorphism and subal-
gebras of the class of algebras {A : A =
〈A,∨,∧, ∗,¬, 0, 1〉 and there is an operation
→ such that 〈A,∨,∧, ∗,→,¬, 0, 1〉 ∈ RL}.

Finally, the last class of algebras that we con-
sider is the subclass in which the pseudocom-
plement is involutive.

Definition 13. We denote by IPMs`, IPM`

and IRL the subvarieties of PMs`, PM` and
RL, respectively, obtained by adding the
equation ¬¬x ≈ x (the involutive law) to the
equations defining these classes.

Theorem 14. Let A ∈ PMs`. The following
conditions are equivalent:

1. A ² x ∗ z ≤ y ⇔ z ≤ ¬(x ∗ ¬y),

2. A ² ¬¬x ≈ x,

3. For every a, b ∈ A, ¬(¬a ∨ ¬b) =
Inf{a, b},

4. A ² x ≤ y ⇔ ¬(¬x ∨ ¬y) ≈ x.

Observe that the first condition says that
¬(x ∗ ¬y) is the residuum with respect to the
operation ∗. And the third condition tells
us that in fact these semilattices are lattices.
Therefore, we can see the following statement.

Theorem 15. Every IPMs`-algebra is the
reduct of a IRL-algebra.

Corollary 16. The varieties IPMs`, IPM`

and IRL are definitionally equivalent.

These involutive algebras are nothing essen-
tially new; as we will now see they are very
close to latticed Grǐsin algebras.

Definition 17. (Cf. [12, latticed L0-algebra])
A latticed Grǐsin algebra is an algebra A =
〈A,∨,∧, +, ∗,¬, 0, 1〉 of type 〈2, 2, 2, 2, 1, 0, 0〉
satisfying the following conditions:

1. 〈A,∨,∧, 0, 1〉 is a bounded lattice,

2. 〈A,+, 0〉 and 〈A, ∗, 1〉 are commutative
monoids,

3. A ² x ≤ y ⇒ x ∗ z ≤ y ∗ z and A ² x ≤
y ⇒ x + z ≤ y + z,

4. A ² ¬x + x ≈ 1 and A ² ¬x ∗ x ≈ 0.



The class of latticed Grǐsin algebras is a well-
known variety [12]. We have the following re-
sult.

Theorem 18. Let A ∈ IPMs`. If we define
on A two new binary operations by means of
the following equations:

x + y ≈ ¬(¬x ∗ ¬y), (1)

x ∧ y ≈ ¬(¬x ∨ ¬y), (2)

then the algebra 〈A,∨,∧, +, ∗,¬, 0, 1〉 is a lat-
ticed Grǐsin algebra. Conversely, every lat-
ticed Grǐsin algebra satisfies the equations
defining the variety IPMs` and the equations
(1) and (2). Hence, the variety IPMs` and the
variety of latticed Grǐsin algebras are defini-
tionally equivalent.

For the classical case we also have an embed-
ding into complete lattices.

Theorem 19. Every IPMs`-algebra is embed-
dable into a complete IRL-algebra. Therefore,
every IRL-algebra is embeddable into a com-
plete IRL-algebra.

5 Connections between the logical
systems and the new varieties

First of all we enumerate the results concern-
ing algebraization of our Gentzen systems.
The first two can be seen as an improvement
of [19, Corollary 9] while the third one is an
improvement of [17, Theorem 9].

Theorem 20. GFLew [∨, ∗,¬] is algebraizable
with equivalent algebraic semantics the vari-
ety PMs`, with translations τ from sequents
to equations and ρ from equations to sequents
defined as follows:

τ(γ0, ..., γm−1 ⇒ δ) =

=




{(γ0 ∗ ... ∗ γm−1) ∨ δ ≈ δ}, if m ≥ 1

{1 ≈ δ}, if m = 0

τ(γ0, ..., γm−1 ⇒ ∅) =

=




{γ0 ∗ ... ∗ γm−1 ≈ 0}, if m ≥ 1

{1 ≈ 0}, if m = 0

ρ(ϕ ≈ ψ) = {ϕ ⇒ ψ, ψ ⇒ ϕ}.

Theorem 21. GFLew [∨,∧, ∗,¬] is algebraiz-
able with equivalent algebraic semantics the
variety PM`, with translations τ from se-
quents to equations and ρ from equations to
sequents defined in Theorem 20.
Theorem 22. GCFLew [∨, ∗,¬] is algebraiz-
able with equivalent algebraic semantics the
variety IPMs`, with translations τ from se-
quents to equations and ρ from equations to
sequents defined as follows:

τ(γ0, ..., γm−1 ⇒ δ0, ..., δn−1) =

=





{(γ0 ∗ ... ∗ γm−1) →
→ (δ0 + ... + δn−1) ≈ 1}, if m 6= 0, n 6= 0

{1 ≈ δ0 + ... + δn−1}, if m = 0, n 6= 0

{γ0 ∗ ... ∗ γm−1 ≈ 0}, if m 6= 0, n = 0

{1 ≈ 0}, if m = 0, n = 0

ρ(ϕ ≈ ψ) = {ϕ ⇒ ψ, ψ ⇒ ϕ},
where ϕ → ψ := ¬(ϕ ∗ ¬ψ) and ϕ + ψ :=
¬(¬ϕ ∗ ¬ψ).

As a consequence of the algebraization we
obtain that the three Gentzen systems are
contraction-free.
Theorem 23. The contraction rule is not
derivable either in GFLew [∨, ∗,¬] or in
GFLew [∨,∧, ∗,¬] or in GCFLew [∨, ∗,¬]. Nor
it is admissible.

In the rest of the paper we explain several
results on the deductive systems introduced.

By using the fact that IPC∗\c is the ex-
ternal deductive system associated with
FLew (see [1, 5]), the previous results about
subreducts and the theorems on algebraiza-
tion, we obtain that the external deduc-
tive system associated with FLew[∨, ∗,¬]
(FLew[∨,∧, ∗,¬]) is the 〈∨, ∗,¬, 0, 1〉-
fragment (the 〈∨,∧, ∗,¬, 0, 1〉-fragment) of
the deductive system IPC∗\c.
Theorem 24. Let Σ ∪ {ϕ} ⊆ Fm〈∨,∗,¬,0,1〉.
Then,

Σ `IPC∗\c ϕ iff Σ `Se[∨,∗,¬] ϕ.

That is, Se[∨, ∗,¬] is the 〈∨, ∗,¬, 0, 1〉-
fragment of IPC∗\c.
Theorem 25. Let Σ ∪ {ϕ} ⊆ Fm〈∨,∧,∗,¬,0,1〉.



Then,
Σ `IPC∗\c ϕ iff Σ `Se[∨,∧,∗,¬] ϕ.

That is, Se[∨,∧, ∗,¬] is the 〈∨,∧, ∗,¬, 0, 1〉-
fragment of IPC∗\c.
For the classical case we have the following.
Theorem 26. The 〈∨, ∗,¬, 0, 1〉-fragment of
CPC∗\c is the external deductive system as-
sociated with GCFLew [∨, ∗,¬].

Now we will explain the position of our deduc-
tive systems in the Abstract Algebraic Logic
hierarchy.
Theorem 27. Neither the deductive sys-
tem Se[∨, ∗,¬] nor Se[∨,∧, ∗,¬] are protoal-
gebraic.

Recall that a deductive system S is protoalge-
braic if the Leibniz operator Ω is monotonic
on the set of S-theories (see for example [6]).
This condition is equivalent to the fact that
there is a set of formulas P (p, q) (in two vari-
ables at most) such that:

∅ `S P (p, p), (Reflexivity)
{p} ∪ P (p, q) `S q, (Modus Ponens)

As a consequence there is no defined binary
connective → such that:

∅ `S p → p, (Identity)
p, p → q `S q, (Modus Ponens).

On the other hand, the behavior in the clas-
sical case is much better.
Theorem 28. The 〈∨, ∗,¬, 0, 1〉-fragment of
CPC∗\c is algebraizable with equivalence for-
mulas {¬(p∗¬q),¬(q∗¬p)} and defining equa-
tion p ≈ 1, and its equivalent algebraic seman-
tics is the variety IPMs`.

Although in the intuitionistic case we do not
obtain algebraizable deductive systems, it can
be seen that the algebraization results for our
Gentzen systems give the following complete-
ness statements.
Theorem 29. The variety PMs` is an al-
gebraic semantics for the deductive system
Se[∨, ∗,¬] with defining equation p ≈ 1.

Remember that this last statement means
that if Σ ∪ {ϕ} ⊆ Fm〈∨,∗,¬,0,1〉, then

Σ `Se[∨,∗,¬] ϕ iff {σ ≈ 1 : σ ∈ Σ} |=PMs` ϕ ≈ 1.

Theorem 30. The variety PM` is an al-
gebraic semantics for the deductive system
Se[∨,∧, ∗,¬] with defining equation p ≈ 1.
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[11] S. Gottwald, A. Garćıa-Cerdaña and F. Bou.
Axiomatizing Monoidal Logic–A Correction.
Journal of Multiple-Valued Logic and Soft
Computing, 9:427–433, 2003.
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