1992 IEEE

International Conference
on Systems, Man,
and Cybernetics

Emergent Innovations
in
Information Transfer
Processing
and Decision Making

The Knickerbocker Hotel
Chicago, lllinois

October 18 - 21, 1992

Volume 1 of 2 IEEE SySteis Man .
92CH3176-5 . and Cybernetics Society

Modularity, Uncertainty and Reflection in MILORD 11

Carles Sierra, Lluis Godo
Institut d'Investigacié en InteHigéncia Artificial {IITA), CSIC
Camd de Santa Barbara, 17300 Blanes, Spain
e-mail: sierra@ceab.es, godo@ceab.es

Abstract Knowledge Based Systems, when program-
med in the large, require special architectures,
adapted to implement complex reascning tasks and
able to combine simple tasks into more sophistica-
ted cnes in a safe way. To tackie this problem
MILORD Il proposes three basic programming tech-
niques: modularisation, reflection and local uncer-
tainty management. Modularisation is a tlechnique
used to map the task/subtask structure of a problem
into a structured KB. Modules consist of a ciean in-
terface, a propaositional object-level language and a
first order meta-level language. Uncertainty is ma-
naged by means of finite multiple-valued local lo-
gics associated to the object-level language of each
module. Reflection between the object-level and the
meta-level languages allows to implement, inside
each module, non-standard reasoning patterns such
as default reasoning or hypothetical reasoming. The
combination of several modules infe a structured
KB is the way MILORD II implements complex rea-
soning patterns.

L INTRODUCTION

Reasoning patterns that appear when modelling complex
tasks cannot often be modelled only by means of a pure clas-
sical logic approach. This is due to several reasons - incom-
pleteness of the available information, need of using and re-
presenting uncertain or imprecise knowiedge., combinatorial
explosion of classical theorem proving when knowledge ba-
ses become large, or a lack of methodology in building
complex and large knowledge bases among them. [n this pa-
per we present a system (MILORD IT) that proposes particu-
lar solutions to these problems.

Incompleteness of the available knowledge may lead to
make assumptions in a deduction process, even if later on
these assumptions are proved to be erroncous. To deal with
non-monetonicity a meta-level approach. based on reflection
techniques and equipped with a declarative backiracking me-
chanism 1s provided by the system. The use of reflection te-
chnigues is a common practice in several knowledge areas,
natural language, philosophy, literature. etc. [4]. The appli-
cation of reflection techniques 1o KBS has been widely used
in the recent past as a clear separation between domain and
control knowledge [6,11]; however, few sysiems have clear

Manuscript received August 1, 1992. This work was supported in part
by the ESPRIT BRA 3085 DRUMS.

semantics, among which we can find OMEGA [6] and BMS
1ol

Due to the nead in Al of dealing most of the times with
uncertain and/or imprecise information, our system provides
at the object-level a family of representation languages based
on multiple-valued logics, where sets of truth-values stand
for scales of linguistic terms representing different degrees of
uncertainty or belief.

Modularisation is a standard technique to manage the com-
plexity of highly interacting systems, such as KBSs. A mo-
duie can be understood as a functional abstraction, by fixing
both the set of components it needs as input, and the type of
results it can produce. This technique has been used in the
context of functional programming, Standard ML [3], and
Logic Programming [8]. In the architecture described in this
paper - MILORD II - both techniques, reflection and modula-
risation, are mixed in order to be able to define complex rea-
soning patterns in the large.

In figure 1 you can seec how a KB looks like in MILORD
IL. Tt consists of a set of hierarchically interconnected modu-
les, each one containing an Object-Level Theory (OLT) and a
Meta-Level Theory (MLT) interacting through a reflective
mechanism.

OT ~C— Impon

—3Export

B

Figure 1. Milord 11 KB structure.

Each module has also an import/export interface. The user
of a KB provides information to modules via the import in-

0-7803-0720-3/92 $3.00 (©)1592 IEEE

terface, and modules provide information to the user or to
other modules via the export interface.

The paper is structured as follows, In the second section
the object-level, based on multiple-valued logics, is presen-
ted and formalised. The third section is devoied to the meta-
level language, the reification and reflection processes, and
the dynamics of the execution of a moduie. Finally, in
Section 4 a brief description of the MILORD II architecture
1S given,

. UNCERTAINTY

Reasoning at the object-level in one module is generically
based on the use of a multiple-valued logic. A particular lo-
gic can be specified inside 2 module by defining which is the
algebra of truth-values, i.e. which is the ordered set of truth-
values and which is the set of logical operators associated to
them. The kind of algebras of truth-values used in MILORD-
iI are those defined as follows.

Defipition: An ordered Algebra of truth-values is a
finite algebra Ay, T = <A Ny, T, IT> such that:
1) The ordered set of truth-values A, is a chain of n ele-
menis;
O=ay<ag<..<a;=1

where 0 and 1 are the booleans Faise and True respectively.
2) The negation operator Ny, is a unary operation defined as
Nn(aj) = an_i+1. the only one that fulfils the following
properties:

NI: if a < b then Np(a) > Np(b), Vae A, Vbe A,

N2: Np?2 = 1d.
3) The conjunction operator T is any binary operation such
that the following properties hold ¥Va, b, c € Ay

T1: T(a,b) = T(b.,a}

T2: T(a,T(b,c)} = T(T(a,b).c)

T3: T(0a)=0

T4: T(la)=a

T5:if a< b then T{a,c) < T(hc) forall ¢
4) The implication operator It is defined by residuation with
respect to T, i.e,

IT(ab) =Max {ce A, suchihat T(ac)<bh]

Such an implication operator satisfies the following proper-
ties:

I Itaby=tif,and only if, a <b

2:ip(l,a)=a

BB I7(a, IT(b.0)} = (b, I(ac))

H4:if a £b, then IT(a, ¢) 2 IT(b,c) and IT{c.a) < IT(c,b)

IS: Ip(T(ab), ¢) = IT(a, IT(bc))

As it is easy 1o notice from the above definition, any of such
truth-value algebras is completely determined as soon as the
set of truth-values and the conjunction operator T are deter-
mined. So, varying these two characteristics we can cbtain a

parametric family of different multiple-valued logics. In this
way, each module can have a local type of reasoning, poten-
tially different from others. Additionally, in order to allow a
fiux of information between modules and submodules with
different local logics, renaming mappings between sets of
truth-values can also be specified inside a MILORD II mo-
dule,

In classical logic we distinguish syntactically A from —A
(A being a formula) becaunse the only two possible truth-va-
lue assignments to A are (rue and faise. Similarly, in our
case, we need a syntactical representation for each fruth-value
assignment to a formula A, Morcover, to handle impreci-
sion, intervals of truth-values are attached to formulas ins-
tead of single values: the more imprecision there is, the lar-
ger the intervals are. Then, the language we propose is such
that sentences are pairs of type (p, V) where p is a classical-
like sentence and V is an interval of truth-values, possibly
empty (represented as [1). This representation leads to single
satisfaction and entailment refations (see $1I.B), rather than
having classical sentences but several satisfaction and entail-
ment relations, as for example in {10). Another interesting
characteristic of the object-level reasoning system is that de-
duoction is based on what we call "Specialisation Inference
Rule™ (SIR), a more general inference rule than Modus
Ponens, introduced in [7] to improve the input/output com-
munication behaviour of the system.

In the sequel, the syntax, the semantics and the deduction
system of the object-level logic are described given a particu-
tar algebra of truth-values Ap T = <Aq, Ny, T, IT>.

x>

A. Syntax!

The propositional language OLyg = (Ag, 20, C, OSy) of the
object-level is defined by:

« A Signature Yo, composed of a set of atomic symbols

plus true and false.
+ A set of Connectives C = {—, A, 5}
*» A set of Sentences OS,; whose elements are pairs of
classical-like propositional sentences and intervals of truth-
values. The classical-like propositional sentences are restric-
ted to literals and rules. That is, the sentences of the lan-
guage are only of the following types:

OL-literals: (p,V)

OL-Rules: (P} A P2 A .. APy = G V2,

being pi#pj, Pi#—Pj, Q#Pj Q% —pj Vi
where p, p1, P2, ... P and q are literals (atoms or negations
of atoms), V and V* are intervals of truth-values. Intervals
V* for rules are constrained to the upper intervals, i.e. of the

1 The syntax used in this Object Level Language description is a
stmplification of the acwal MILORD 1 syntazx,

2 The cormesponding rule in MILORD IT syntax would be:
ifpy andpy and ... and p, then conclude gis V*

256

R iRl v s

form [a,1}, where a > 0. In the sequel, and for the sake of
simplicity, we will identify intervals of type fa, a} with the
value a.

B. Semantics

The semantics is basically determined by the connective ope-
rators of the truth-value algebra Ay 1. Having truth-values
explicit in the sentences enables us to define a classical satis-
faction relation in spite of the models being multiple-valued
assignments.
» Models Mp are defined by valuations p, i.e. mappings
from the first components of sentences to Ay such that:
pltrue) =1 p(false) =0
PP =Nulp(®@) plp1 A p2) =Tl D, p(P)
P~ q) =Irlp(p). plgh
= The Satisfaction Relation between models and sen-
tences is defined by:

Mp kg (0, V) iffpp) e V

C. Deducrion system

The object-level deduction system is based on the following
axiom schemes:
{AS-I)(=p—p. 1)
the following axioms:
(A-1) {true, 1) {A-2) (false, 0)

and on the following inference rules:

(RI-1) weakening: (p,V1) o (p.V2) where Vi ¢ Vo
(RI-2} not-introduction: (p.V) - g (—p. N*5(V))

(RI-3) composition: {{(p.V1). (p.V2)}} Fo (p.VI N V2)
(RI-4) SIR:

[PLVDAPL A o A DL A DA Pitl A o A Do = GV
FO (P1 A o ADicl APit] A - ADPn— 4, MP*T(Vi,Vr)).

(AS-2}(p, [0, 1])

N*, and MP*T stand for the point-wise extensions! of Ny
and MPT respectively. MPT is the binary function from A,
10 the set I{A) of intervals of A, defined as:

11, if a and & are inconsistent
MPr(a,b)={[a,l], ifb=1

T(a,b), otherwise
where a and b are inconsistent if there exists no ¢ such that
I(a.c) = b. MP7(a, b) provides the set of all solutions in A,

for p(q) in the following equation systen:

p{p)=a
P—>q=b
which corresponds to a multiple-valued version of the classi-
cal Modus Ponens inference rule.

! Actually, MP 1 is defined to give the minimal interval containing the
point-wise extension.

It is easy to check that this deductive system is sound.,

Theorem (Soundness). Let A be a sentence and I a set
of sentences. Then, I' Fp A implies I Fp A.

II. META-LEVEL AND REFLECTION

A. The meta-level

The meta-level language is a restricted classical first

order tanguage ML = (301, C, MS) defined by:

« A Signature 2y = (Zrel. T fun. Teon, Lvarl. Where:

Zel = A set of atomic predicate identifiers plus Ass, Res, K,
WK and P (with special semantics, see §1I1T),

Zrun = A set of classical arithmetic function symbols.

Zeon = A set of constants including the truth-values and
object propositional symbols.

Zvar = A set of variabie symbols; it can be cmpty.

+ The same set of connectives C as in the object language,

= A set of sentences MS = MLL; U MR where:

1.- MLL is the set of ground literals, in a classical sense,
from Y.

2.- MLR is the set {p] A P2 A ... APy — qlp;and q are
Hiterals from ¥pf) of meta-nules, where every variable oc-
curring in q must occur also in some p;. Variables in
meta-rules, if any, are considered universaly quantified.

The semantics of the language is a first order classical one.
The meaning of the special predicates X, WK and P will be
explained when defining the reification correspondence
($IIL.C), which gives sense to these predicates as a representa-
tion of object-level sentences. The meaning of Ass and Res
predicates 1s out of the scope of this paper. They are used to
implement hypothetical reasoning via a declarative backtrac-
king mechanism. The interested reader is referred to [9].
The deduction system is based on only one inference
rule:
PIAP2A wonPn— 4, P1P2s o Pr'F M T

where p1'... py' are ground instances of py ... py respectively,
such that there exists a unifter o for {p1 A p2 A . A Pp,
Pi'AP2 A ..App'},and q' = go is the ground instance of g
resulting from o,

B. Dynamics of the reasoning process

A compiex KB consists of a hierarchy of moedules. Each mo-
dule comairas an Object-level Theory (OLT) and a Meta-Level
Theory (MLT). The goal of a module is to compute the most
precise truth intervals for the propositions contained in its
export interface, Then, a module execution consists of the re-
asoming process necessary to compute the truth intervals for
some of the propositions in the export interface, those the
user is interested in.

267

e TR S RIS S

The execution of a module can activate the execution of its
submodules in the hierarchy. These executions only interact
with the parent module through the export interface of the
submodules, giving formulas back as result. So, submodule
execution extends the OLTs of modules by adding to them
the formulas returned. Tt is worth noticing that the interaction
is made only at the object-level.

The reasoning precess will be described in terms of varia-
tions of the Object-level Theories! and Meta-Level Theories.
The initial OLT of a module consists of its set of rules, i. e.
a partial KB, It is the same for the MLT, which initially
consists of the set of meta-rules.

Definitions

» We call an object-level elementary extension the extension
of the OLT by a single literal. This can be done either by
inference on the OLT, or by importing a piece of data
either from the user (as specified in the import interface),
from a submodule OLT or from the current MLT.

« We call a meta-level elementary extension the extension of
the current MLT by the set of ground literals resulting
from the application of a single meta-rule over all the
possible instantiations of its premise.

The communication between OLTs and MLTs is done th-
rough reification and reflection processes that are explained in
detail in the next subsection. Here, and as a rough introduc-
tion, we can say that a reification process maps sentences of
the object-level into sentences of the meta-level, whereas a re-
flection process maps meta-level sentences into object-level
sentences, verifying reify(reflect{A)) = A.
The reasoning dynamics follows the next scheme.

STEP 1: The user selects a module to begin the system exe-
cution. The carrent OLT is the set of rules of the module, the
current MLT is the set of meta-rules plus the instances of the
user defined meta-predicates. These instances are given when
defining the dictionary of a module (see §IV.A).

STEP 2: The reasoning process starts at the object-level with
the current OLT. If no elementary extension of the OLT is
produced then STOP, otherwise the reasoning process control
is passed to the meta-level (STEP 3).

STEP 3: When the meta-level gets the control it builds the
current MLT as the previous MLT pius the axioms coming
from the reification of the current OLT. Then the meta-level
reasoning process is activated. If no extension of the MLT
can be obtained, the control is passed back to the object-level
without extending the current OLT, i.e. the reflection does
not modify the current OLT. On the other hand when an infe-
rence can be performed, and thus 2 meta-level elementary ex-

! Theoties are considered not closed under deduction. So, they are closer
to the concept of presentation.

tension is made, the control is passed to the object-level ex-
tending the current OLT by adding the reflection of the com-
puted extension of the MLTZ, In any case the control goes to
STEP 2.

This dynamic process goes on till no possible extension of
the OLT can be made.

C. Reification

The reification correspondence relates a subtheory of the
OLT with the set of ground literals of the meta-language
MLLG.

Definition: Given a OLT, we define the minimal literal
theory OLTi+ as:

OLTyx = { (p, W) I p literal, W = A {V; L(p, V) € OLT}}

A small set of meta-predicates are necessary to relate the
OLLs with MLLLG. For each one the comresponding reflection
rules® are defined. Given that the constant names used in the
MLT are exactly the same as those used in the OLT as pro-
position names, the renaming operation is omitted.

Meta-predicate K: K(p, V) means that V is the minimal
interval such that the proposition {p, V) belongs to the OLT.
There is a close world assumption on this predicate.

(p, V)€ OLT;+
Fm K@V}

(@ V)¢ OLT}»
F 3 ~K@.V)

Meta-predicate WK: WK(p,V) means that (p, V) is
deducible in the OLT, i.e. OLT ¢ {(p, V). -WK{p, V}

means that OLT o (p, VY with V' 2 [0, 11 but V' ¢ V.

(p. V) e OLTx and V c V*
F M WK(p,V*)

{(p. V) e OLTi+and V ¢ V*
g - WK({p,V¥)

Meta-predicate P: P(p) means that {p. V) belongs to the
deductive closure of OLT being V # [0, 1]. If at the moment
of the reification the computing of the deductive closure for p

2 In fact, the object-level will immediately pass the controf to the mea-
level. This is the implicit iteration construct provided in MILORD II.

3 We use this name, according to the literature, for both the upwards and
downwards inference rules.

258

is not finished neither 2{p) nor ~P(p) will be generated.

OLT ¢ (p, V}and V = [0, 1}
Fm P(p)

OLT ¥g (p, VY and V # [0, 1]
Fp —P(P)

With these reflection rules we can differentiate between diffe-
rent sorts of partiality in the information: propositions provi-
sionaly unknown, { p | F» K(p, [0, 1]} §, and propositions
that are definitively unknown because they cannot be proven
{pltp—P(p} |

D. Reflection

The reflection process maps the meta-level theories mto
object-level literals. Only instances of the K predicate are
considered, because the other related meta-predicate Ass is
ransformed into several instances of the K predicate in diffe-
rent MLT extensions, see {9]. The reflection rule that relates
MLT with OLT is defined as:

F K(p, V)
Fo (p. V)

V. MODULARITY

MILORD 1! is a currently working KBS environment, which
contains the features described up to now, and others that are
out of the scope of this paper. The interested reader is referred
to [1,2]. We will concentrate on the description of the modu-
lar structure of the language.

The language provides three basic mechanisms of module
manipulation:

1) Composition of modules through the declaration of sub-
modules,

2) Refinement of modules, and

3) Composition of modules through operators defined by the
user via generic modules definition (out of the scope of
this paper).

Next, a description of the different components of a
MILORD II module is made. Then, the most important ope-
ration is outlined: Combination, Combination is used to
build up the hierarchical structure of modules. Refinement is
used to perform inheritance between modules [9]. Given the
space at hand the MILORD 1 description will necessarily be
Jjust a glimpse.

A, Modules

The basic KB units of MILORD II are modules. Modules are
compound structures. The basic elements that compose a
module are:

+ Import interface: information to be provided by the userl,
» Export interface: output result of a module.

» Object-level knowledge: an initial Object-level Theory.

» Meta-level knowledge: an initisd Meta-Level Theory.
Next a detailed description of the two last components is
presented.

Object-level Knowledge: The object-level knowledge of
a module is composed of:

a} Dictionary : this component defines the fact identifiers and
some of their attributes, for example their type. It also defi-
nes relations between facts, i.e. meta-predicate instances.
These refations are defined at the object-level for the sake of
compactness. However, they belong to the meta-level know-
tedge. For exampie:

Dictionary:
Predicates:

Temperature =
Name: "Patient's Temperature (in centigrade)”
Question: "Which is the patient's Temperature?”
Type: Numeric
Relation: less-rellevant-than AIDS

; within the Temperature predicate definition the next

"

;; meta-predicate stance is present:

less-rellevant-than(T emperature, AIDS)

1y

b) Rules: this component represents the relational know-
ledge. For example:

ROOO5 if fever » 38.5 and shivers

. - . 2
then conclude bacterian-disease is possible~

¢) Local logic: it defines three main components of an
nference System.: (i) the set of truth-values, (ii) a renaming
mapping between the ruth-values of the submeduies, if any,
and the truth-values of the module that combines them and
(i) the connective operators used to combine and propagate
the truth-values when making inference. A more compleie
description can be found in [3].

The next piece of code is an example of module definition
containing rufe and logic declarations.

1 Modules can also import information from other modules via their
declaration as submodules. See §IV.RB.

2 Given that rules always have intervals of the type {a, 1] these intervals
are written in MILORD 1] as just a.

259

Module Previcus Treatment —

Begia
Import Prev_Treat
Export Penicillin, Tetracycline

Deductive knowledge
Dictionary: not defined here
Rules:
ROO1 If Prev_ Treat = (Peni)
Then conclude Penicillin is sure
ROO2 If Prev_Treat = (Peni)
Then conclude Tetracycline is umpossible
Inference system:
Truth-values = (impossible, sure)

Connectives!;
Conjunction:
{ (impossible, impossible, impossible)
(impossible, possible, possible)
(impossible, possibie, sure))
end deductive
end

Meta-level knowledge: The current implementation of
the meta-language allows the definition of meta-rules (as ex-
plained in previous sections), and the type of module execu-
tion, which can be lazy or eager. Lazy means that facts are
evaluated, at the object-level, oaly when needed. ie. imported
facts and exported facts of submodules are asked only if they
may be useful to compute the export interface of the module.
On the contrary an eager module execution obtains, first of
all, values for the imported facts and for the exported facts of
the submodules and then the deductive knowledge is used.
The interaction between OLT and MLT (reification/reflection
step) is made after every import information is obtained, after
every submodule execution and after every time OLT is ex-
tended by deduction.

B. Combination of modules

We say that a module combines other modules when it ac-
cess 10 their exported facts. It can be done in two ways: (1)
declaring submodules, and (2) applying a generic module.

The declaration of submodules is identical, syntactically,
to the declaration of modules, and it is the key to the hierar-
chical organisation of KBs. The distinction between a KB
and a piece of a KB is lost in MILORD II, and a KB will
then be a module, possibly confamning other modules as
submodules,

A generic module can be seen as a module with some
submodule names, the name of the arguments, not linked to
any particular module. At application time argument names
are linked to the particular modules given as parameters.

! Connectives may be defined as a truth-table, represeated by rows, and
following the order of the linguistic terms. In the conjuntion definition
of this example module it is represented that: impossible A impossible =

impossible, impossible A possible = impossible, ete,

In both cases, i.e. 2 module which combines its submodu-
les or a generic module applied over some parameters, the re-
sulting module may use, in its rules and meta-rules, the facts
appearing in the export interfaces of the modules declared as
submodules and/or the parameters. The access 1o the exported
facts is made using a prefix mechanism. An exported fact is
identified by two components: 1) a path of module names,
separated by /", indicating how to access to the fact in the
hierarchy of modules, and 2) the name of the fact, e,

name} {name 3/ ../ namey / Jact_name,

These combinations of modules build up a hierarchical
structure of modules. Each module containing their particular
object-level and meta-level theories.

V. CONCLUSIONS

In this paper, MILORD II, a meta-level architecture for
complex reasoning tasks, has been presented. Its main cha-
racteristics are the multiple-valued local logics management,
the reification/reflection processes and the hierarchical modu-
far structure. The object and meta-level languages are forma-
lised and their dynamic interaction described. A glimpse of
the whole MILORD 11 shell is aiso given.

REFERENCES

(1] Agusti I, Sierm C., Sannella D. (1989): "Adding generic Modules
to Flat rule-based languages: A low cost approach”, in
Methodologies for Intelligenr Systems, vol 4, Zbigniew Ras ed.,
Elsevier. .

[2]1 Agusti 1., Esteva F., Garcia P, Godo LI, Lopez de Maintaras R,
Murgui L1, Puyol J., Sierra C. (1991) : Structured Local Fuzzy
Logics in MILORD, in Fuzzy Logic for the Management of
Uncertainty, Zadeh and Kacprzyk eds., Wiley, (to appear).

31 Agusii 1., Esteva F., Garefa P, Godo LL., Sierra C. (1991):
"Combining Multiple-valued Logics in Modular Expent Systems”,
i Proc. 7th Conference on Uncertainty in A, Los Angeles, July.

[4] Bardeut S. 1., Suber P (eds.) (1987): Self-reference: Reflections on
reflexivity, Maninus Nijhoff Publishers, Dordrecht,

[SI Harper R.. MacQuesen D., Millner R. {1986): The defirnition of
Standard ML . Report ECS-LFCS-86-2, Dept. of Computer Science,
Univ. of Edinburgh.

[6} Maes P, Nardi D (1988): Meta-leve! Architectures and Reflection,
North-Holland, Amsterdam.,

{[7] Puayol]. Godo L1, Sierra C. {1992): "A Specialization Calculus to
Improve Expert Systems Communication”, in Proc. ECAI92,
Wien.

[8] Sannella D. T., Wallen L. A. (1992): "A Calculus for the
Construction of Modular Prolog Programs”, The Journal of Log.
Pragramming, pp. 147-177.

(9] Sierma C, Godo L1, {1992): Specifying Simple Scheduling Tasks in
a Reflective and Modular Architecture, in Proc. Workshop on
Formal Specification Methodsy fer Complex Reasoning Tasks,
ECAI'92, Wien.

(10} Tan Y. H., Treor J. (1091} : "A Bi-Modular Approach to Non-
Monotonic Reasoning”, in Proc. First World Congress on the
Fundamemals of Al WOCFAL-91, pp. 461, 475, Paris.

[¥1] Treur 1. (1991): "On the Use of Reflection Principles in Modelling
Complex Reasoning", International Journal of fntelligent
Systems, vol 6 pp. 277-294,

260

