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Abstract

Trust and reputation are concepts that have been
traditionally studied in domains such as electronic
markets, e-commerce, game theory and bibliomet-
rics, among others. More recently, researchers
started to investigate the benefits of using these
concepts in multi-robot domains: when one robot
has to decide if it should cooperate with another one
to accomplish a task, should the trust in the other be
taken into account? This paper proposes the use of
a trust model to define when one agent can take an
action that depends on other agents of his team. To
implement this idea, a Heuristic Multiagent Rein-
forcement Learning algorithm is modified to take
into account the trust in the other agents, before se-
lecting an action that depends on them. Simulations
were made in a robot soccer domain, which extends
a very well known one proposed by Littman by ex-
panding its size, the number of agents and by us-
ing heterogeneous agents. Based on the results it
is possible to show the performance of a team of
agents can be improved even when using very sim-
ple trust models.
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space, which can be very time consuming, a problem that is
worsened by the existence of multiple agents. Despite that,
Multiagent Reinforcement Learning (MRL) algorithms have
been proposed and successfully applied to some simple prob-
lems, such as the Minimax-Q [Littman, 1994], the Friend-
or-Foe Q-Learning [Littman, 2001] and the Nash Q-Learning
[Hu and Wellman, 2003].

An recently proposed way of increasing the convergence
rate of an RL algorithm is to use heuristic functions for sele
ing actions in order to guide the exploration of the statésac
space in an useful way [Bianckt al, 2008]. In this pro-
posal, called heuristically Accelerated Reinforcemerarhe
ing (HARL), the heuristic function is associated with a pref
erence policy that indicates that a certain action musthenta
instead of another. This proposal was also extended to deal
with Multiagent problems [Bianchet al., 2007], but without
taking into account that different agents may not perform in
the way the heuristic action demands.

This paper investigates the use of a trust model to define
when one agent can take an action that depends on other
agents of his team. To implement this idea, a Heuristic Multi
agent Reinforcement Learning algorithm called Heuriditica
Accelerated Minimax-Q (HAMMQ) was modified to take
into account the trust one agent have in the other agents, be-
fore selecting an action that depends on them.

The remainder of this paper is organized as follows: Sec-

Reinforcement Learning (RL) techniques are very attractiv tion 2 briefly reviews the Multiagent Reinforcement Learn-

in the context of Multiagent systems: they are easy to usdng problem and the Distributed Q—Learning algorithm, whil

have guarantee of convergence to equilibrium in the limitSection 3 describes the heuristic approach to RL. Section 4

(provided that some conditions are satisfied, such as a largg0ows how to incorporate a simple trust model in the Heuris-

number of visits to every state-action pair [Watkins, 1989:tically Accelerated Minimax-Q algorithm. Section 5 pretsen

Mitchell, 1997]), are based on sound theoretical foundathe experiments performed and shows the results obtained.

tions [Littman and Szepesvari, 1996; Szepesvari andnaitt, ~ Finally, Section 6 provides our conclusions and outlines fu

1996], and have been applied to solve a wide variety of conture work.

trol and planning problems when neither an analytical model

nor a sampling model is availabéepriori [Kaelbling et al., 2 Multiagent Reinforcement Learning

1996; Munos and Bourgine, 1998]. )
Unfortunately, convergence of any RL algorithm may only Markov Games (MGs) — also known as Stochastic Games

be achieved after extensive exploration of the state-actio(SGS) — are an extension of Markov Decision Processes

(MDPs) that uses elements from Game Theory and allows the
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Initialise Q. (s, a, o). whereg is a random value with uniform probability in [0,1]

Repeat: andp (0 < p < 1) is a parameter that defines the explo-
Visit states. ration/exploitation trade-off: the greater the valueppfthe
Select an action using thee — Greedy rule (eq. 4). smaller is the probability of a random choice, angdsdon, i
Executes, observe the opponent’s action a random action selected among the possible actions in state
Receive the reinforcements, a, o) s. For non-deterministic action policies, a general formu-
Observe the next staté. lation of Minimax-Q has been defined elsewhere [Littman,

1994; Banerjeet al,, 2001].
Finally, the Minimax-Q algorithm has been extended to
cover several domains where MGs are applied, such as

Update the values (@(s, a,0) according to:
Qi+1(8,a,0) — Q(s,a,0)+

/ alr(s,a,0) +Vi(s') = Qi(s,a,0).  General-Sum Games [Crandall and Goodrich, 2005], Robotic
S 5. ) o Soccer [Littman, 1994; Bowling and Veloso, 2001] and Econ-
Until some stopping criterion is reached. omy [Tesauro, 2001].
Table 1: The Minimax-Q algorithm. 3 Heuristically Accelerated Multiagent

Reinforcement Learning

e A; ... Ai: acollection of setsd; with the possible ac-  Several algorithms that speed up Multiagent Reinforcement
tions of each agent Learning (MRL) have been proposed. One of them is the

o T:SxA x...x Ay — II(S): astate transition func- Heuristically Accelerated Minimax Q (HAMMQ) algorithm

tion that depends on the current state and on the actiorjs/anchiet al, 2007], which can be defined as a way of solv-
of each agent. Ing a ZSMG by making explicit use of a heuristic function

i H: S x Ax O — Rtoinfluence the choice of actions during
e Ri:Sx A x...x A — Rt aset qf reward functions the learning processH (s, a, 0) defines a heuristic that indi-
specifying the reward that each ageéneceives. cates the desirability of performing actianwhen the agent
Solving an MG consists in computing the poligy: S x IS in states and the opponent executes action
Aj x...x A that maximizes the reward received by an agent It can be said that the heuristic function defines a “Heuris-
along time. tic Policy”, that is, a tentative policy used to accelerdte t
To solve a MG, Littman [1994] proposed the use of a sim-learning process. The heuristic functio_n can be derived di-
ilar strategy to Minimax for choosing an action in the Q- rectly from prior knowledge of the domain or from clues sug-
Learning algorithm, the Minimax-Q algorithm (see Table 1).9ested by the learning process itself and is used only during
The action-value function of an actiarin a states when the ~ the selection of the action to be performed by the agentein th
opponent takes an actioris given by: action choice rule that defines which acti@should be exe-
cuted when the agent is in stateThe action choice rule used
Q(s,a,0) = r(s,a,0) +7 Z T(s,a,0,5)V(s"), (1) InHAMMQis amodification of the standakd- Greedy rule
oes that includes the heuristic function:

and the value of a state can be computed using linear Pro; () ) e max min Q(s,a,0) + EHy(s, a,0)| if ¢ < p,
gramming [Strang, 1988] via the equation: Urandom Otherwise

_ - (5)
Vis) = reTiia) 2%18;4@(5’ @, 0)a, (@) whereH : Sx Ax O — Ris the heuristic functiony is a ran-

dom value uniformly distributed ové®, 1] and0 < p < 11is

where the agent’s policy is a probability distribution oeer & parameter that defines the exploration/exploitatiorewéd
tions,r € II(A), and, is the probability of taking the action The subscript indicates that it can be non-stationary #nd
a against the opponent’s action a real variable used to weight the influence of the heuristic.

An MG where players take their actions in consecutive ASageneralrule, the value éf; (s, a, 0) used in HAMMQ
turns is called an Alternating Markov Game (AMG). In this should be higher than the variation among @@, a, o) val-
case, as the agent knows in advance the action taken by thies for the same € S, o € O, in such a way that it can
opponent, the policy becomes deterministic,S x A x O influence the choice of actions, and it should be as low as

and equation 2 can be simplified: possible in order to minimize the error. It can be defined as:
= i max Q(s,i,0) — Q(s,a,0) +nif a =7 (s),
V(s) max min Q(s,a,0). 3) H(s,a,0) ¢ Q( - ) —Q( )+n (s)
_ ] _ _ 0 otherwise
In this case, the optimal policy isz* = (6)
arg max, min, Q*(s,a,0). ~ A possible action choice herey is a small real value (usually 1) and(s) is the
rule to be used is the standare- Greedy: action suggested by the heuristic policy.

. oA i, < As the heuristic function is used only in the choice of the
(s) = arg max min ((s, a,0) if ¢ <p, (4)  action to be taken, the proposed algorithm is different from
Grandom otherwise the original Minimax-Q in the way exploration is carried out



Initialize Qt(s, a,0) andHy(s, a, o).
Repeat:
Visit states.
Select an action using the modified—Greedy rule Ad
(Equation 5).
Executen, observe the opponent’s action
Receive the reinforcements, a, o) A9
Observe the next staté. (A3 Bd
Update the values dfl;(s, a, 0).

Update the values (@(s, a,0) according to:
Qt+1(81a70) — Qt(S,G,O)—f— .
alr(s,a,0) + YVi(s') — Q+(s,a,0)].

Ba

Bg

s« s
Until some stopping criterion is reached. Figure 1: The “Expanded Littman’'s Soccer” environment
proposed.

Table 2: The HAMMQ algorithm.

Since the RL algorithm operation is not modified (i.e., up-Nvolving RL [Banerjee and Peng, 2003; Tran and Cohen,
dates of the functioi) are the same as in Minimax-Q), our 2002], mobile agents [Derbas al, 2004] and in multi-robot
proposal allows that many of the theoretical conclusions obdomains [Fagiolinet al, 2008, 2007]. .
tained for Minimax-Q remain valid for HAMMQ. Conver- . This paper proposes .the use of a trust model to weight the
gence of this algorithm is presented by Bianehal. [2007] influence of the heuristic. Among several trust models and
together with the definition of an upper bound for the error.definitions in the literature [Ramchumt al, 2004; Huynh
The complete HAMMAQ algorithm is presented in Table 2. et al, 2006], we choose to implement an observed individ-
One important characteristic of the HARL algorithms is ual model O.f trust, following 'ghe one dEf'.ned in [Mei al,
that, as the heuristic function is explicit, the learningaal ~ 2002]- In this work, the trust in an agemf in the eyes of;;
rithm is able to further refine it, quickly removing any error IS & real variablé < 7;; < 1 which is the number of suc-
that the heuristic may contain. Bianadti al. [2008] studied cessful cooperation observed b)yover. the tota] number of
the case when an agent uses a heuristic that is is not corf2Servations made hy of a; collaborations1; ,; is only fac-
pletely adequate. The results is that, at the moment that tH@"ed in actions that includes a collaboration betweensgen
heuristic starts being used, a worsening of performance o@nd j; actions that do not include a collaboration between tw
curs (because of the inadequacy of the heuristic used), bG@ents havé; ; = 1. . . .
acceleration begins as soon as the agent learns to ignore the!© Implement this model, the action choice rule used in the
heuristics in the states they are not effective. EHAMMQ is a mod|f|ca'g|on of the original one, whe.re.the
Despite the fact that RL is a method that has been traditrust value is used to weight the influence of the heuristic:
tionally applied in the Robotic Soccer domain, only recentl . TA i
HARL methods started being used in this domain. Biagthi (¢ — ) 88 max min Q(s, a,0) + TijH(s, a, 0>] Tq<p,
al. [2007] investigated the use of the HAMMQ in a Multia-
gent domain, a simplified simulator for the robot soccer do-
main; Celibertcet al. [2007] studied the use of the HAMRL 5 Robotic Soccer using t-HAMMQ
algorithms to speed up learning in the RoboCup 2D Simula-

Grandom Otherwise

: : A set of empirical evaluations of t-HAMMQ were carried out
tion domain. . ; .

in a proposed simulator for th_e robot soccer dom:_;un that ex-
4 Combining Trust and MRL tends the one proposed by Littman [1994]. In this domain,

two teams, A and B, of three players each compete in a 15 x

One problem with the HAMMQ algorithm is that, in actions 10 grid presented in figure 1. Each team is composed by the
that involve more than one agent, one is never sure if thgoalie ), the defenderd) and the attackew). Each cell can
other agents will collaborate and perform as the heurigtic d be occupied by one of the players, which can take an action
mands. Also, in the case where heterogeneous agents exist$,a turn. The actions that are allowed are: keep the agent
one agent cannot be sure that the other will be capable dftill, move — north, south, east and west — or pass the ball to
completing the task. One way to tackle this problem is to usenother agent. The action “pass the ball” from aggrib a;
an explicit value that weights the influence of the heurjstic is successful if there is no opponent in between them. Iether
deciding if it should be used or not. is an opponent, it will catch the ball and the action will fail

The concepts of Trust and Reputation have been tradi- Actions are taken in turns: all actions from one team’s
tionally studied in domains such as electronic markets, eagents are executed at the same instant, and then the oppo-
commerce, game theory and bibliometrics, among otheraents’ actions are executed. The ball is always with one of
[Ramchurnet al, 2004]. Recently, researchers started tothe players. When a player executes an action that would fin-
investigate the benefits of using these concepts in problenish in a cell occupied by the opponent, it looses the ball and



° ' ' ' " Minimax-Q ——— Table 3: Average of goals at the end of 3000 games playing
8| LHAMMS i against a Minimax-Q opponent (average and standard devia-
71 . tion of 30 training sections for each algorithm).
6. 1 Algorithm Goals madex goals conceded
51 . . Minimax-Q | (123824 77) x (124134 85)

¢ . 1 HAMMQ | (14704+ 104)x (113454 84)

5} ) t-HAMMQ | (16633+ 302) x (13366+ 278)
2 F g Table 4: Average number of games won at the end of 3000
1L ] games playing against a Minimax-Q opponent (average and

P e standard deviation of 30 training sections for each algonjt

0 [ Pt e o s P o
1 . . . . . Algorithm Games wonx games lost

0 500 1000 1500 2000 2500 3000 Minimax-Q | (12184 29) x (1226+ 23)
Games HAMMQ (1714+ 28) x (8294 21)
t-HAMMQ | (18134 75) x (649+ 67)

Figure 2: Goal balance for the Minimax-Q, the HAMMQ and
the t-HAMMQ algorithms against an agent using Minimax-Q

for Extended Littman’s Robotic Soccer (average of 30 train- Figure 2 presents the learning curves (the difference of
ing sections for each algorithm). goals made at the end of a game) for the three algorithms

when learning while playing against a learning opponent us-
ing Minimax-Q. It can be seen that t-HAMMQ is better at the

stays in the same cell. If an action taken by the agent leads heginning of the learning process. Studenttest [Spiegel,

out the board, the agent stands still. When a player with thd 998] was used to verify the hypothesis that the use of heuris

ball gets into the opponent’s goal, the move ends and its teaiits speeds up the learning process. The result is that the t-

scores one point. At the beginning of each game, the agentsAMMQ is better than Minimax-Q until the 1560 game,

are positioned in a random position and the possession of thaith a level of confidence greater than 5%. After the 1800

ball is randomly determined, with the player that holds thegame the results are comparable, since both converge to equi

ball making the first move. librium. (Tests were made until the 10.06@ame to ver-
The agents in this extended simulator are heterogeneous {fy if the algorithms had reached their equilibrium). The

the sense that they have different perception and executictpMe comparison, between the - HAMMQ and the HAMMQ,

capabilities: some agents can perceive the whole field gwhilShows that the first is better than the latter until the 500

others can perceive only a small grid around them; som&ame.

agents runs faster than others, and some agents are capabl&inally, table 3 shows the average number of goals and ta-
of kicking the ball further. ble 4 presents the average number of games won at the end of

In this experiment each team is composed by the goalie3000 games. It can be seen that when Minimax-Q agents are

the defender and the attacker. The goalie only perceives gla)éing a%ainst other Minimax-Q agents, tf|1e nhumberof go;’:]l!ls
5 x 5 grid around itself, while the other agents perceive thd"ade and games won are approximately the same, while

whole field. The attacker runs at twice the speed of the othe‘f”hen t-HAMMQ agents played against Minimax-Q ones, t-
HAMMQ team made more goals and won more games.

agents, and the goalkeeper can only kick the ball as far a Th dinth : h ¢
the middle of the field. The reinforce the agents receive are:, | '€ Parameters used in the experiments were the same for

the goalie receives 100 every time a goal is scored against 2!l the algorithms. The learning rate is = 0,9, the ex-
it: the defender receives100 every time it gets the ball and ploration/ exploitation rate was defined as being equal2o 0.

100 every time it loses it; and the attacker receiveig0if ~ and the discount factoy = 0.9 (these parameters are sim-

a goal is scored by his team. The difference in the rewardi@' {© those used by Littman [1994]). The valueipivas
they receive makes them learn different roles. setto 1. Values in the Q table were randomly initiated, with

- : ' . ; 0 < Q(st,a+,0¢) < 1. The experiments were programmed in
The heuristic policy used was defined using a simple rulec++ (GNU g++ compiler) and executed in a MacBook Pro
pass the ball to the agent closest to the goal. Note that tr\ﬁith 4GB of RAM in a Mac OS X platform '
heuristic policy does not take into account the opponents po P '

sition, leaving the task of how to avoid them to the learning .

process. In this example, the trdg} in an agen; in the 6 Conclusion

eyes ofa; is the number of goal made hy observed by:;  This paper used a trust model to define when one agent can

over the total number of passes received. T;; starts the take an action that depends on other agents of his team, and

game with the value di.5. tested it using a Heuristic Multiagent Reinforcement Learn
Thirty training sessions were run for the Minimax-Q, the ing algorithm, the HAMMQ), in an expanded robotic soccer

HAMMQ and the t-HAMMQ, with each session consisting simulation domain.

of 3000 games of 10 trials. A trial finishes whenever a goal is The experimental results obtained in the domain of robotic

scored or when 500 moves are completed. soccer games showed that the team of agents using trust val-



ues t-HAMMQ algorithm performed better than the team us- tributed intrusion detection for multi-robot systems. In
ing the Minimax-Q or the HAMMQ algorithms, scoring more  ICRA pages 120-127. IEEE, 2008.

goals and winning more games than both of them. Junling Hu and Michael P. Wellman. Nash g-learning for

This app_roach can alsq be incorporate(_j .into other well general-sum stochastic gamdsurnal of Machine Learn-
known Multiagent RL algorithms, such as Minimax-SARSA, ing Research4:1039-1069, 2003.

Minimax-Q()\), Minimax-QS and Nash-Q. Future works also
include working on obtaining results in more complex do-
mains, such as RoboCup 2D and 3D Simulation and Small
Size League robots.

Trung Dong Huynh, Nicholas R. Jennings, and Nigel R.
Shadbolt. An integrated trust and reputation model for
open multi-agent systemautonomous Agents and Multi-
Agent System43(2):119-154, 2006.
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